
MiMo-Audio: Audio Language Models are Few-Shot Learners

LLM-Core Xiaomi

Abstract

Existing audio language models typically rely on task-specific fine-tuning to accomplish particular
audio tasks. In contrast, humans are able to generalize to new audio tasks with only a few examples
or simple instructions. GPT-3 has shown that scaling next-token prediction pretraining enables
strong generalization capabilities in text, and we believe this paradigm is equally applicable to
the audio domain. By scaling MiMo-Audio’s pretraining data to over one hundred million of
hours, we observe the emergence of few-shot learning capabilities across a diverse set of audio
tasks. We develop a systematic evaluation of these capabilities and find that MiMo-Audio-7B-Base
achieves SOTA performance on both speech intelligence and audio understanding benchmarks
among open-source models. Beyond standard metrics, MiMo-Audio-7B-Base generalizes to
tasks absent from its training data, such as voice conversion, style transfer, and speech editing.
MiMo-Audio-7B-Base also demonstrates powerful speech continuation capabilities, capable of
generating highly realistic talk shows, recitations, livestreaming and debates. At the post-training
stage, we curate a diverse instruction-tuning corpus and introduce thinking mechanisms into
both audio understanding and generation. MiMo-Audio-7B-Instruct achieves open-source SOTA
on audio understanding benchmarks (MMSU, MMAU, MMAR, MMAU-Pro), spoken dialogue
benchmarks (Big Bench Audio, MultiChallenge Audio) and instruct-TTS evaluations, approaching
or surpassing closed-source models. Model checkpoints and full evaluation suite are available at
https://github.com/XiaomiMiMo/MiMo-Audio.
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1 Introduction

Human speech interaction is characterized by its remarkable flexibility and diversity. Individuals
form their understanding of speech by integrating a wide array of contextual factors—such as
speakers, accents, environments, and social settings, while simultaneously modulating their own
vocal expressions, like tone and prosody, in accordance with their internal states, such as mood,
intent, and physical condition (Sumner, 2011; Lehet and Holt, 2020; Bradlow and Bent, 2008).
This adaptive capability is swift and dynamic, for example, humans naturally lower their voice in
a quiet library or raise it during a heated debate as circumstances change. In contrast, existing
audio language models lack this inherent vocal intelligence and generalizability in comprehension
and generation (Zhang et al., 2023a; Défossez et al., 2024; KimiTeam et al., 2025; Wu et al.,
2025). To perform a range of speech tasks, including spoken dialogue, speech translation, and
voice style transfer, these models still rely on being fine-tuned with task-specific datasets.

The success of GPT-3 (Brown et al., 2020a) has proven that scaling up pre-training with next-token
prediction paradigm is a viable path to achieving task generalization in the text domain. We
hypothesize that this principle extends to the speech domain, where pre-training on massive-
scale speech corpora using next-token prediction objective can endow a model with strong
generalization abilities across a wide range of speech tasks. While prior efforts have explored
next-token prediction pretraining for speech (Borsos et al., 2023; Zhang et al., 2023a; Défossez
et al., 2024; Zeng et al., 2024; Li et al., 2025), these models fail to achieve broad, general-purpose
generalization for general speech tasks (Fang et al., 2025; Xu et al., 2025; KimiTeam et al., 2025;
Wu et al., 2025; Goel et al., 2025).

We believe there are two critical aspects for next-token prediction pre-training in speech. The
first is an architecture that enables the lossless flow of speech information. To fully leverage the
potential of the next-token prediction paradigm, we hope all information within the speech signal
to circulate through the model. This implies that we cannot use speech representations that incur
a loss of paralinguistic information, which distinguishes our approach from current mainstream
solutions (Zeng et al., 2024; KimiTeam et al., 2025; Wu et al., 2025). The second aspect is scaling
up. We believe that continuously scaling the volume of pre-training data will lead to sustained
performance improvements and unexpected emergent abilities (Wei et al., 2022a). Therefore, we
scaled our training data to over one hundred of millions of hours, which is an order of magnitude
larger than the data used for the largest existing open-source speech models. The objective of
this pre-training is to equip the model with task generalization capabilities in the speech domain,
meaning the model develops a broad set of atomic skills at training time, and then uses those
abilities at inference time to rapidly adapt to or recognize any speech task. Our guiding principle
for the pre-training method is to ensure that all information from the speech signal is preserved
and flows through the model architecture.

• Tokenizer: We posit that the foremost criterion for an audio tokenizer is its reconstruc-
tion fidelity, and that its tokens should be amenable to downstream language modeling.
Accordingly, we introduce MiMo-Audio-Tokenizer. This 1.2B-parameter model employs a
Transformer-based architecture comprising an encoder, a discretization layer, and a decoder,
operating at a 25Hz frame rate and generating 200 tokens per second through 8 layers of
residual vector quantization (RVQ). By integrating semantic and reconstruction objectives,
we trained it from scratch on a 10-million-hour corpus, achieving superior performance in
reconstruction quality and facilitating downstream language modeling.

• Architecture: To enhance the modeling efficiency for high-token-rate (200 tokens/second)
sequences and mitigate the length disparity between speech and text modalities, we propose
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a novel architecture combining a patch encoder, LLM, and patch decoder. The patch encoder
aggregates four consecutive timesteps of RVQ tokens into a single patch, downsampling
the sequence to a 6.25Hz representation for the LLM. Subsequently, the patch decoder
autoregressively generates the full 25Hz RVQ token sequence.

• Training: To realize a unified pre-training paradigm for both understanding and generation
and to endow the model with advanced vocal intelligence, we devise a two-stage training
strategy, leveraging MiMo-7B-Base (Xiaomi, 2025) for initialization. Stage 1 is dedicated
to speech understanding, while stage 2 integrates both understanding and generation in a
unified framework. Each stage features tailored training tasks. Notably, we observed the
spontaneous emergence of in-context learning abilities for speech during this process.

• Data: We have scaled our pre-training corpus to an unprecedented over 100 million hours
of speech data, representing an order-of-magnitude increase over any existing open-source
speech model. This was supported by a purpose-built, end-to-end data pipeline for pre-
processing, annotation, and curation.

• Evaluation: We have developed a comprehensive benchmark to rigorously assess the model’s
in-context learning capabilities in the speech domain. The benchmark is designed to evaluate
multiple facets, including modality-invariant general knowledge, auditory comprehension
and reasoning, and a diverse suite of speech-to-speech generation tasks.

After large-scale pre-training, MiMo-Audio-7B-Base demonstrates strong few-shot learning capabili-
ties (Brown et al., 2020b). It exhibits very high "Speech Intelligence" and strongmodality alignment
when evaluated on our constructed SpeechMMLU, which originates from MMLU (Hendrycks et al.,
2021) and is built by synthesizing its tasks into speech. MiMo-Audio-7B-Base achieves superior
performance under speech input and output, with results closely approaching text-based MMLU,
and incurs only a minor degradation in text performance. It also shows excellent generalization
to unseen tasks: with just a few demonstrations in the context, it can perform tasks such as voice
conversion, style transfer, speech rate control, denoising, and speech translation. Furthermore,
MiMo-Audio-7B-Base displays powerful speech continuation abilities, generating highly realistic
and semantically coherent monologues or multi-speaker dialogues in formats like talk shows,
speeches, debates, podcasts, and game commentaries.

We believe the core objective of post-training is to align the model’s pre-trained generaliza-
tion capabilities with instruction-following abilities. To this end, we construct a highly diverse
instruction-tuning corpus for audio understanding and generation by aggregating high-quality
open-source and in-house data spanning multiple domains. To further enhance the model’s
cross-modal reasoning abilities, we also created high-quality "thinking" (chain-of-thought; Wei
et al., 2022b) data for both audio understanding and generation tasks. To obtain human-like and
style-controllable speech dialogue data, we trained MiMo-TTS-7B on over 7 million hours of data
to convert text-based conversations into speech. MiMo-Audio-7B-Instruct demonstrates superior
audio understanding and reasoning abilities after post-training. It achieves SOTA results among
open-source models on audio understanding/reasoning benchmarks such as MMSU (Wang et al.,
2025), MMAU (Sakshi et al., 2025), MMAR (Ma et al., 2025), and MMAU-Pro (Kumar et al., 2025),
approaching or surpassing the performance of closed-source models. MiMo-Audio-7B-Instruct
also shows exceptional speech intelligence and instruction-following capabilities, significantly
outperforming other open-source models on spoken dialogue benchmarks like Big Bench Audio
and MultiChallenge Audio (Sirdeshmukh et al., 2025). In instruction-following TTS tasks, its
performance is comparable to that of GPT-4o-mini-tts.

Our key contributions are:
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• We present the first empirical evidence that scaling lossless, compression-based speech
pre-training to an unprecedented 100 million hours unlocks emergent task generalization,
exemplified by powerful few-shot learning abilities. We argue this represents a "GPT-3
moment" for the speech domain.

• We propose the first comprehensive and replicable blueprint for generative speech pre-
training, which includes a novel tokenizer, a scalable architecture, a phased training strategy,
and a holistic evaluation suite.

• We pioneer the integration of thinking into the modeling process for both speech under-
standing and generation, bridging the gap between perception and complex cognitive
tasks.

2 Model Architecture

2.1 MiMo-Audio-Tokenizer

A main challenge in existing audio tokenization methods lies in effectively balancing the inherent
trade-off between semantic and acoustic information in audio signals. Semantic tokens, typically
derived from self-supervised learning models (Hsu et al., 2021; Chung et al., 2021; Zhang et al.,
2023c) or ASR models (Zeng et al., 2024; Li et al., 2025), exhibit a strong correlation with
linguistic content, facilitating alignment with the text modality. However, their primary drawback
is the loss of fine-grained acoustic information, which constrains the quality of raw waveform
reconstruction. In contrast, acoustic tokens generated by neural audio codecs (Zeghidour et al.,
2021; Défossez et al., 2022) enable high-fidelity audio reconstruction but struggle to establish
effective alignment with the text semantic space.

To jointly capture both semantic and acoustic information, prior works such as SpeechTok-
enizer (Zhang et al., 2023b) and Mimi (Défossez et al., 2024) have attempted to incorporate
semantic distillation strategies into neural audio codecs to obtain unified audio tokens. Nev-
ertheless, constrained by the limited scale of their encoders, these methods struggle to fully
mitigate the conflict between semantic and acoustic information and their semantic expressiveness
remains inferior to semantic tokens. Other approaches, like X-Codec (Ye et al., 2025a) and
XY-Tokenizer (Gong et al., 2025), employ a dual-stream architecture with separate semantic
and acoustic encoders to alleviate these issues. However, these methods still rely on pre-trained
semantic models, and their dual-encoder architecture results in semantic and acoustic information
originating from separate representation spaces.

To address these limitations, we propose MiMo-Audio-Tokenizer, a unified tokenizer trained
from scratch that is capable of both capturing semantic information and enabling high-fidelity
audio reconstruction. By scaling up the model’s parameters and training data, MiMo-Audio-
Tokenizer further alleviates the semantic-acoustic representation conflict, thereby enhancing both
cross-modal alignment and speech reconstruction quality.

2.1.1 Architecture

As illustrated in Figure 2, the architecture of MiMo-Audio-Tokenizer comprises four main compo-
nents: an audio encoder, a discretization module, an audio decoder and a vocoder. The audio
encoder is composed of a central Transformer encoder with bidirectional attention, bracketed by
2× downsampling layers at the input and output. The central encoder consists of 32 layers with
20 attention heads, employing Rotary Position Embeddings (RoPE; Su et al., 2024) and GELU

6



+

D
o
w

n
S

a
m

p
le

 

D
o
w

n
S

a
m

p
le

 

U
p

S
a
m

p
le

 

U
p

S
a
m

p
le

 

Discretization

Large Language Model

T
ra

n
sfo

rm
e
r

IS
T

F
T

TextTranscription
Caption

…

D
isc

rim
in

a
to

rs

Real/Fake

Multi-Scale Reconstruction Loss

Next Token Prediction Loss

L
a
ye

r
1-3

 

L
a
y
e
r
4

-3
2
 

L
a
ye

r
1-3

2
 

: Module for training only

Audio Encoder Vocoder

+ : Add & Norm : Dataflow in training only : Dataflow in stage 1 only : Dataflow in stage 2 only

Audio Decoder

Figure 2 Illustration of MiMo-Audio-Tokenizer framework.

activations (Hendrycks and Gimpel, 2016). We set the model dimension to 1280 and the FFN
inner dimension to 5120. To mitigate the conflict between semantic and acoustic information,
we add the layer-3 hidden states to the final-layer output via element-wise summation. The
discretization module has a 20-layer Residual Vector Quantizer (RVQ; van den Oord et al., 2018;
Zeghidour et al., 2021), where the first two layers have a codebook size of 1024, and the re-
maining layers use a size of 128. The audio decoder adopts a mirror structure to the encoder but
employs causal self-attention to support streaming generation. The vocoder follows the Vocos
design (Siuzdak, 2024) but replaces the ConvNeXt (Liu et al., 2022) backbone with a Transformer,
enabling sequence packing for more efficient training. The Transformer has 16 layers, 16 heads, a
model dimension of 256, an FFN dimension of 1024. It incorporates RoPE and sliding window
attention with window sizes of [40, 10], which provides the Vocoder with receptive fields of [6.4s,
1.6s].

Given a single-channel audio waveform 𝑋 sampled at 24 kHz, we first convert it into a mel-
spectrogram with a frame rate of 100 Hz. This spectrogram is then fed into the audio encoder,
which transforms it into a sequence of continuous representations of length 𝑀 at 25 frame rate. The
RVQ within the discretization module subsequently quantizes these continuous representations
into a 2D matrix of discrete indices 𝐴 ∈ N𝑀×𝑅, where 𝑅 is the number of RVQ layers. These
indices are then used to reconstruct the quantized representation Q by looking up and summing
the corresponding embeddings from the codebooks. Finally, the audio decoder and the vocoder
reconstruct the audio waveform 𝑋 from Q.

2.1.2 Training

Inspired by Wu et al. (2023), we employ a two-stage training paradigm to enhance training
efficiency as depicted in Figure 2. In stage 1, the model undergoes multi-task learning on a
large-scale dataset. Specifically, we scale up the training data to over 11 million hours. This
extensive training enables the model to jointly encode both semantic and acoustic information. In
stage 2, the parameters of the audio encoder and discretization module are frozen. Discriminators
are introduced to train the audio decoder and vocoder, focusing on improving the reconstruction
of fine-grained details in the original audio waveform and eliminating vocoding artifacts.

Unified Representation Learning In stage 1, we combine the audio reconstruction task and the
audio-to-text (A2T) task to align the representation spaces of audio and text while ensuring the
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preservation of acoustic information. To provide supervision for the A2T objective, we introduce an
LLM that is jointly trained with MiMo-Audio-Tokenizer. All parameters of MiMo-Audio-Tokenizer
and LLM are trained from scratch. We formulate the A2T objective as a next-token prediction loss
applied to the LLM’s text output, defined as:

LA2T = −
𝑁∑︁
𝑖=1

log 𝑝(𝑡𝑖 |Q̃, 𝑡1, . . . , 𝑡𝑖−1), (1)

where 𝑇 = [𝑡1, . . . , 𝑡𝑁] is the target text sequence, Q̃ is the quantized audio representation, and 𝑁

is the total length of the text sequence.

For the audio reconstruction task, we adopt a multi-scale mel-spectrogram reconstruction loss,
defined as the 𝐿1 distance:

Lrecon =
∑︁
𝑖∈𝑒

∥S𝑖 (𝑋) − S𝑖 (𝑋)∥1, (2)

where S𝑖 denotes the mel-spectrogram at scale 𝑖 with 2𝑖 bins, computed using a normalized
Short-Time Fourier Transform (STFT) with a window size of 15 · 2𝑖−1 and a hop length of 15 · 2𝑖−2.
The set of scales is defined as 𝑒 = {5, 6, 7}. Finally, including the commitment loss Lcommit from
the discretization module, the total loss for stage 1 is a weighted sum:

Lstage1 = 𝜆A2TLA2T + 𝜆reconLrecon + 𝜆commitLcommit, (3)

where 𝜆A2T=10.0, 𝜆recon=1.0, 𝜆commit=1.0.

Adversarial Fine-tuning In stage 2, we introduce additional discriminators for adversarial
training to improve waveform reconstruction quality. During this stage, all parameters involved in
the audio tokenization process are frozen to preserve the semantic structure of the audio token
space. We adopt a multitask GAN training recipe that jointly optimizes (i) a mel-spectrogram
reconstruction loss from stage 1, (ii) an adversarial loss, and (iii) a discriminator feature-matching
loss. To provide supervision in both the time and frequency domains, we employ a Multi-Period
Discriminator (MPD; Kong et al., 2020) together with a Multi-Scale STFT discriminator (MS-STFT;
Défossez et al., 2022). We adopt the Hinge-GAN (Lim and Ye, 2017; Miyato et al., 2018) training
framework, applying spectral normalization to all discriminator layers and disabling weight decay
during discriminator training. Let D = {𝐷𝑘}𝐾𝑘=1 denote the full set of sub-discriminators across
MPD and MS-STFT. Given a real waveform 𝑋 and a generated waveform 𝑋 , the discriminator
objective can be formulated as

L𝐷 =
1
𝐾

𝐾∑︁
𝑘=1

[
E𝑋

[
max(0, 1 − 𝐷𝑘 (𝑋))

]
+ E𝑋

[
max(0, 1 + 𝐷𝑘 (𝑋))

] ]
, (4)

and the generator adversarial objective is

L̃adv = − 1
𝐾

𝐾∑︁
𝑘=1

E𝑋
[
𝐷𝑘 (𝑋)

]
, (5)

where the normalization by 1
𝐾
prevents the number of sub-discriminators from dominating the op-

timization. For feature matching, we minimize the ℓ1 distance between intermediate discriminator
activations:

Lfm =
1
𝐾

𝐾∑︁
𝑘=1

1
𝐿𝑘

𝐿𝑘∑︁
ℓ=1



 𝑓𝑘,ℓ (𝑋) − 𝑓𝑘,ℓ (𝑋)



1, (6)
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SEED-ZH SEED-EN
System kBPS PESQ-NB PESQ-WB SIM STOI PESQ-NB PESQ-WB SIM STOI

MiMo-Audio-Tokenizer 1.55 3.30 2.71 0.89 0.93 3.02 2.43 0.85 0.92
GLM-4-Voice-Tokenizer 0.175 1.11 1.06 0.33 0.61 1.11 1.05 0.12 0.60
Baichuan-Audio-Tokenizer 1.0 2.37 1.84 0.78 0.86 2.11 1.62 0.69 0.85
XY-Tokenizer 1.0 2.88 2.24 0.87 0.90 2.69 2.14 0.82 0.90
Mimi 1.1 2.57 2.05 0.73 0.88 2.60 2.07 0.74 0.89
XCodec2.0 0.8 2.69 2.10 0.81 0.89 2.57 2.01 0.78 0.89
BigCodec 1.04 2.88 2.26 0.80 0.91 2.80 2.22 0.80 0.91

Table 1 Evaluation of audio tokenizers on Seed-TTS-Eval dataset. ZH/EN split results are reported
in the same row for each system. kBPS denotes the effective bitrate (kilobits per second) of the
tokenized audio stream.

where 𝑓𝑘,ℓ (·) returns the ℓ-th–layer features of 𝐷𝑘, and 𝐿𝑘 denotes the number of intermediate
layers included. When forming the composite objective, we assign fixed weights to the individual
losses to keep their gradient magnitudes on comparable scales. The generator is trained with

L𝐺 = 𝜆recon Lrecon + 𝜆adv L̃adv + 𝜆fm Lfm, (7)

where 𝜆recon=1.0, 𝜆adv=1.0, 𝜆fm=2.0.

2.1.3 Evaluation

Settings We assess the preservation of acoustic information in audio tokenization with mul-
tiple metrics. These include: Speaker Similarity (SIM), calculated as the cosine similarity of
embeddings from a pre-trained speaker verification model1; Short-Time Objective Intelligibil-
ity (STOI; Taal et al., 2010); and Perceptual Evaluation of Speech Quality (PESQ; Rix et al.,
2001). All evaluations are conducted on the ground-truth recordings of Seed-TTS-Eval (Anastas-
siou et al., 2024). The compared baselines include GLM-4-Voice-Tokenizer (Zeng et al., 2024),
Baichuan-Audio-Tokenizer (Li et al., 2025), XY-Tokenizer (Gong et al., 2025), Mimi (Défossez
et al., 2024), XCodec (Ye et al., 2025b), and BigCodec (Xin et al., 2024). Considering our down-
stream MiMo-Audio is trained exclusively on audio tokens produced by the first eight codebooks
of MiMo-Audio-Tokenizer, we evaluate and compare waveform reconstruction quality decoded
using only those codebooks. This protocol faithfully reflects the fidelity of the audio accessible to
the downstream language model. We evaluate Mimi under the same protocol for consistency.

Results As shown in Table 1, MiMo-Audio-Tokenizer delivers strong reconstruction quality on
Seed-TTS-Eval. Across both ZH and EN splits, it achieves the highest scores on PESQ-NB/WB, SIM,
and STOI, substantially outperforming all baselines at a comparable bitrate. Crucially, these gains
are measured exactly on the codebooks used for downstream modeling, indicating that MiMo-
Audio preserves the full fidelity of speech information, which in turn yields strong generalization
across diverse speech tasks.

2.2 MiMo-Audio

MiMo-Audio is a unified generative audio-language model that jointly models sequences of text
and audio tokens, as illustrated in Figure 3. The model accepts both text and audio tokens as input

1https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
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Figure 3 Model architecture of MiMo-Audio.

and autoregressively predicts either text or audio tokens, thereby supporting a comprehensive
range of tasks involving arbitrary combinations of text and audio modalities.

Formally, let 𝑇 = [𝑡1, . . . , 𝑡𝑁] denote the text sequence and the audio token sequence be defined
as:

𝐴 = [𝐴1, . . . , 𝐴𝑀], 𝐴𝑖 ≜ (𝑎𝑖,1, . . . , 𝑎𝑖,𝑅′), (8)

where 𝑁 denotes the text sequence length, 𝑀 the audio sequence length, and 𝑅′ = 8 the number
of RVQ codebooks used for LLM training. Since audio sequences have relatively low information
density, individual audio frames convey much less information than text tokens. To mitigate
this mismatch in granularity across modalities and facilitate cross-modal knowledge transfer, we
partition the audio sequence into contiguous groups of 𝐺 frames, forming audio patches:

𝑃 = [𝑃1, . . . , 𝑃𝑀/𝐺], 𝑃𝑖 = [𝐴(𝑖−1)𝐺+1, . . . , 𝐴𝑖𝐺]. (9)

The input to MiMo-Audio is the interleaved sequence of text tokens and audio patches. Let
𝑆 = [𝑠1, . . . , 𝑠𝐿] denote the interleaved sequence, where each element 𝑠𝑖 is either a text token or
an audio patch. The model is trained autoregressively:

𝑝(𝑆) =
𝐿∏
𝑖=1

𝑝(𝑠𝑖 |𝑠1, . . . , 𝑠𝑖−1), (10)

where 𝑝(𝑠𝑖 |𝑠1, . . . , 𝑠𝑖−1) represents next-token prediction when 𝑠𝑖 is a text token or next-patch
prediction when 𝑠𝑖 is an audio patch. This unified modeling approach enables seamless handling
of arbitrary text-audio interleaved sequences. MiMo-Audio comprises three primary components:
a patch encoder, an LLM backbone, and a patch decoder, which we describe in detail below.

2.2.1 Patch Encoder

The patch encoder transforms audio tokens within each patch into a single hidden vector. We
maintain 𝑅′ distinct embedding tables {𝐸𝑟}𝑅

′

𝑟=1 that map audio tokens to their corresponding
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embedding vectors. For each audio token 𝑎𝑖,𝑟, we obtain its embedding as e𝑖,𝑟 = 𝐸𝑟 (𝑎𝑖,𝑟). The
embeddings across all RVQ codebooks for frame 𝑖 are aggregated to form a unified representation:

e𝑖 =
𝑅′∑︁
𝑟=1

e𝑖,𝑟 . (11)

The resulting sequence within each patch is processed by a Transformer encoder with 𝐿enc = 6
layers. Each layer has a hidden dimension of 1024, 64 attention heads, and an FFN dimension
of 4096. The encoder employs bidirectional self-attention, which enables the model to capture
local contextual information across frames. The outputs from all frames within the patch are
subsequently concatenated and projected through a linear transformation layer to match the input
dimensionality of the LLM.

2.2.2 Large Language Model

We employ MiMo-7B-Base (Xiaomi, 2025) as the LLM backbone. The model accepts inputs at
each position as either text token embeddings or audio patch representations produced by the
patch encoder. The resulting hidden states can be processed through an output projection layer
for text token prediction or fed to the patch decoder for audio patch generation, as described in
the subsequent section.

2.2.3 Patch Decoder

The patch decoder autoregressively generates audio tokens within each patch during audio
generation. It comprises 𝐿dec = 16 Transformer layers, each with a hidden dimension of 1024,
64 attention heads, and an FFN dimension of 4096. The decoder employs causal masking in the
self-attention mechanism. The patch decoder employs the same 𝑅′ embedding tables as the patch
encoder, one for each RVQ codebook. To facilitate RVQ token generation, the Transformer is
equipped with 𝑅′ independent output heads, each dedicated to predicting tokens for a specific
RVQ codebook.

Formally, given a hidden state h from the LLM, let 𝑃 = [𝐴1, . . . , 𝐴𝐺] denote the audio patch to be
generated. The naive approach involves autoregressive generation of audio frames within each
patch along the temporal dimension:

𝑝(𝑃 |h) =
𝐺∏
𝑖=1

𝑝(𝐴𝑖 |h, 𝐴1, . . . , 𝐴𝑖−1), (12)

where the probability for each frame 𝐴𝑖 decomposes across the 𝑅′ codebooks:

𝑝(𝐴𝑖 |h, 𝐴1, . . . , 𝐴𝑖−1) =
𝑅′∏
𝑟=1

𝑝(𝑎𝑖,𝑟 |h, 𝐴1, . . . , 𝐴𝑖−1). (13)

However, due to dependencies between tokens across different RVQ layers, predicting all RVQ
tokens simultaneously at each time step is challenging and often leads to poor audio generation
quality. To mitigate this limitation, we introduce a delay mechanism for audio token generation,
inspired by Copet et al. (2023). Specifically, we introduce layer-specific delays 𝐷 = [𝑑1, . . . , 𝑑𝑅′],
where 𝑑𝑟 represents the delay (in time steps) for generating tokens at RVQ layer 𝑟. The delayed
audio patch is formalized as:

𝑃′ = [𝐴′1, . . . , 𝐴
′
𝐺+max(𝐷) ], (14)
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Hyper-parameter Patch Encoder LLM Patch Decoder

Model Architecture

model dimension 1024 4096 1024
FFN dimension 4096 11008 4096
attention heads 16 32 64
number of layers 6 36 16
context length 4 8192 11

Input/Output Space

text vocab size 151680
audio channels 8
audio vocab sizes 1024-1024-128-128-128-128-128
audio frame rate 6.25 Hz

Table 2 Model architecture and Input/Output space configuration.

where

𝑎′𝑖,𝑟 =

{
𝑎𝑖−𝑑𝑟 ,𝑟 if 1 ≤ 𝑖 − 𝑑𝑟 ≤ 𝐺

0 otherwise
(15)

for 𝑖 ∈ [1, 𝐺 +max(𝐷)] and 𝑟 ∈ [1, 𝑅′]. Here, 0 denotes an empty token that is disregarded during
both encoding and decoding processes. The patch decoder models these delayed audio patches
autoregressively following the aforementioned formulation and maintains the delay pattern during
the decoding phase. We list the detailed model configuration in Table 2.

3 Pre-Training

3.1 Data

Our pre-training corpus consists of unimodal data (text-only and speech-only) andmultimodal data
(speech–text). The construction procedure for the text-only corpus is described in MiMo (Xiaomi,
2025). For the speech modality, the objective is to provide the model with large-scale, high-quality,
and diverse audio data. To this end, we developed a comprehensive data pipeline that integrates
data collection, automated processing, multi-dimensional annotation, and quality control.

3.1.1 Data Preprocessing

Our pre-training data contains hundreds of millions of hours of In-the-wild audio data, and we
ensure the data’s diversity in terms of source and content.

• Source Diversity: The data covers a variety of sources, such as public podcasts, audiobooks,
news broadcasts, interviews, and conference recordings. This multi-source, heterogeneous
data combination ensures the model will not be biased towards specific recording environ-
ments or speaking styles.

• Content Diversity: The data covers topic areas such as daily communication, entertainment
media, business and entrepreneurship, arts and culture, and scientific research. This enables
the model to learn about rich knowledge domains.
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To transform large-scale raw audio into high-quality training data, we designed and implemented
an efficient and scalable automated pipeline, inspired by previous work (Yu et al., 2023; He et al.,
2024; Kang et al., 2024; Song et al., 2024). The pipeline incorporates modules such as audio
normalization, speaker diarization, voice activity detection (VAD), automatic speech recognition
(ASR), and audio quality assessment.

3.1.2 Data Labeling

To accurately evaluate and filter the pre-training data, we built an automated annotation system
covering semantic and non-semantic dimensions to generate rich, structured attribute labels for
each piece of data.

• Semantic Dimension: Based on the transcription results from modules like ASR, we built
a text quality assessment model. This model can score the semantic value of the content
from multiple dimensions such as conversational quality, knowledge density, and logical
reasoning.

• Non-semantic Dimension: To obtain non-semantic level information, we trained an audio
captioning model. This model can directly generate rich natural language descriptions for
the audio (such as non-semantic information like timbral characteristics, emotional style,
and background environment).

This dual-dimension annotation method not only measures data quality but also endows the corpus
with more fine-grained attribute information, thereby supporting more efficient and targeted
filtering and training.

3.1.3 Data Curation

On the basis of multi-dimensional data annotation, we conducted rigorous filtering and sampling
of the data.

• Low-Quality Data Filtering: According to preset quality thresholds, we removed segments
containing excessive noise, low-quality, and unsafe content, ensuring the reliability of the
final corpus.

• High-Quality Data Sampling: We integrated scoring metrics from semantic and non-
semantic dimensions and designed a sampling strategy to ensure the model can learn
efficiently from the high-quality corpus.

3.2 Training

Our training starts from the MiMo-7B-Base model. To maximally preserve its text capabilities
while simultaneously equipping the model with speech understanding and generation abilities,
MiMo-Audio employs a progressive, two-stage pre-training method.

3.2.1 Understanding Training

In the first stage, we train the model’s patch encoder and LLM components. This stage aims to
enable the model to master speech understanding capabilities. We constructed a dataset of 2.6T
tokens in total, consisting of 1.2T text tokens and 1.4T speech-related tokens (calculated at a
6.25Hz speech frame rate). The data includes four task formats: speech-text interleaved data,
ASR data, general audio captioning data, and text-only pre-training data. During this stage, we
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Hyper-parameter Pre-training Post-trainingUnderstanding Understanding-Generation

LR (Patch Encoder) 2e-4 2e-4 5e-5
LR (LLM) 3e-5 3e-5 1e-5
LR (Patch Decoder) - 2e-4 5e-5
LR scheduler constant cosine cosine
batch size 16.8M tokens 16.8M tokens 2.1M tokens
warmup ratio 0.01 0.01 0.01
loss weights 1-0-0-0-0-0-0-0-0 100-12-8-6-4-2-2-1-1 100-12-8-6-4-2-2-1-1
delay patterns - 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7

Table 3 Training configuration across different stages. LR stands for learning rate.

only compute the loss on the text tokens. As detailed in the Table 3, the learning rate for the patch
encoder is 2e-4, while the LLM’s learning rate is 3e-5, with a constant learning rate scheduler.
Each batch contains 16.8M tokens, and the training context length is 8192.

3.2.2 Understanding-Generation Joint Training

In the second stage, we train all parameters of the model, including the patch encoder, LLM, and
patch decoder. This stage is designed to provide the model with an integrated capability for both
speech understanding and generation. The training dataset has 5T tokens, comprising 2.6T text
tokens and 2.4T audio tokens (calculated at a 6.25Hz speech frame rate). This includes seven task
formats: speech continuation, speech-text interleaved data, ASR, TTS, general audio captioning,
instruction-following TTS, and text pre-training data. In this stage, we compute the loss on both
text and audio tokens. The loss weight for text tokens is 100, while the weights for the respective
RVQ tokens are 12, 8, 6, 4, 2, 2, 1, and 1. As shown in the Table 3, the learning rate for the patch
encoder and decoder is 2e-4, the LLM’s learning rate is 3e-5, and the learning rate scheduler
follows a cosine decay. The batch size and context length remain consistent with Stage 1.

3.3 Evaluation

We evaluate MiMo-Audio-7B-Base using two types of evaluation: few-shot in-context learning
evaluation and speech continuation evaluation.

3.3.1 Few-shot In-context Learning

To systematically assess the overall capabilities of MiMo-Audio-7B-Base after large-scale pre-
training, we follow the GPT-3–style evaluation paradigm (Brown et al., 2020b) and adopt a
few-shot in-context learning protocol for speech–text competence along three dimensions:
modality-invariant general knowledge, auditory comprehension and reasoning, and speech-to-
speech generation. Table 4 provides an overview of our few-shot in-context learning evaluation
setup.

Modality-Invariant General Knowledge We define modality-invariant general knowledge as
the ability to access and express the same underlying knowledge regardless of input or output
modality. To assess this across speech and text, we construct SpeechMMLU2 by synthesizing

2https://huggingface.co/datasets/XiaomiMiMo/SpeechMMLU
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Capabilities Dataset Input Modality Output Modality #Examples

General Knowledge SpeechMMLU

Text Text 5
Speech Text 5
Text Speech 5

Speech Speech 5

Audio Understanding MMAU Audio+Text Text 5

Speech-to-Speech Refer to Table 5 Speech Speech 16

Table 4 Settings of few-shot in-context learning evaluation.

the questions and options from the MMLU dataset (Hendrycks et al., 2021) into speech while
preserving their semantic content. The dataset is filtered by subject and length, resulting in a
total of 8,549 entries across 34 subjects. We use a commercial TTS system with diverse voices for
the synthesis. It consists of four parallel splits, enabling same-question cross-modal controls for
evaluating knowledge across text-to-text, speech-to-text, text-to-speech, and speech-to-speech
scenarios.

• Text-to-Text (T2T): Serves as a metric for retention of text capability and shows whether
competence gained from text pretraining are diluted by speech–text pretraining; it also
provides an upper-bound reference for speech performance.

• Speech-to-Text (S2T): Compared with T2T, S2T quantifies the cross-modal cost of mapping
a spoken question to its semantic form while producing a text answer on general-knowledge
items.

• Text-to-Speech (T2S): Relative to T2T, T2S probes the consistency and controllability of
converting semantic content to spoken output on general-knowledge items.

• Speech-to-Speech (S2S): S2S provides a comprehensive measure of the model’s integrated
potential for end-to-end speech interaction on general-knowledge by completing the lis-
ten–think–speak loop.

Auditory Comprehension and Reasoning While the S2T split of SpeechMMLU evaluates the
model’s ability to recover semantics from speech and answer general-knowledge questions, it
offers limited coverage of non-semantic auditory factors. To fully characterize MiMo-Audio’s
upper bound in auditory understanding after large-scale speech–text pretraining, we extend the
evaluation beyond basic semantic understanding to additional dimensions of the acoustic world.
Accordingly, we assess the model on the MMAU test suite (Sakshi et al., 2024) under a few-shot
in-context learning setup. MMAU comprises audio information extraction and reasoning QA across
three domains: speech, environmental sounds, and music.

Speech-to-Speech Generation MiMo-Audio represents speech with high-fidelity audio tokens
that serve as a unified interface for perception and generation, thereby casting pretraining as high-
fidelity compression over large-scale speech corpora. We hypothesize that sufficiently effective
compression induces in-context learning ability that naturally generalizes to various downstream
speech-to-speech tasks without parameter updates. To test this, we design a few-shot in-context
speech-to-speech evaluation protocol that conditions exclusively on paired speech exemplars
provided in context. Detailed descriptions of each speech-to-speech generation task can be found
in Table 5.
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Task Examples Input Expected Output

Voice Conversion Paired utterances from
speakers A and B that
share identical semantic
content.

Utterance from speaker
A whose semantics differ
from the examples.

Utterance that preserves
the input semantics but
is rendered with speaker
B’s timbre.

Emotion Conversion Paired utterances from a
fixed speaker with emo-
tion A and emotion B;
each pair shares identi-
cal semantics.

Utterance from the same
speaker with emotion A
whose semantics differ
from the examples.

Utterance with the same
timbre and semantics as
the input but with emo-
tion B.

Rate Conversion Paired utterances from a
fixed speaker with rate
A and rate B; each pair
shares identical seman-
tics.

Utterance from the same
speaker with rate A
whose semantics differ
from the examples.

Utterance with the same
timbre and semantics as
the input but with rate
B.

Speech Denoising Paired utterances from a
fixed speaker including
a noisy recording and its
related clean version.

Noisy utterance from the
same speaker whose se-
mantics differ from the
examples.

Denoised version of the
input utterance.

Speech Translation Paired En-Zh utterances,
with speakers not fixed
across examples.

English sentence to be
translated.

Translated Chinese sen-
tence.

Table 5 Example tasks for few-shot in-context speech-to-speech evaluation.

3.3.2 Speech Continuation

Continuation represents a fundamental capability of autoregressive language models. Through
generative pretraining on extensive text corpora, text language models like GPT-3 (Brown et al.,
2020b) acquire the ability to produce coherent textual continuations from input prompts. Analo-
gously, MiMo-Audio undergoes generative pretraining on large-scale speech corpora and performs
language modeling over high-fidelity audio tokens. This training paradigm endows the model
with general speech continuation capabilities: given a brief speech prompt, MiMo-Audio-7B-Base
can generate semantically coherent continuations while preserving critical acoustic characteris-
tics of the input, including: (i) speaker-specific characteristics such as identity and timbre, (ii)
prosodic features encompassing rhythm, intonation, and tempo, (iii) environmental acoustics and
non-speech audio elements (e.g., applause, laughter, sighs).

To probe this capability, we collect speech prompts from diverse domains, including stand-
up comedy, public oratory, broadcast journalism, poetry recitation, audiobook narration, and
academic lectures, as well as multi-speaker scenarios such as debates, interviews, and theatrical
performances.

3.4 Results

Emergent Ability As shown in Figure 1, we observed significant emergent abilities across
multiple evaluation benchmarks, including 5-shot SpeechMMLU (T2S and S2S), 16-shot Voice
Conversion, and 16-shot Speech-to-Speech Translation. During the initial training stage (before
the data volume reached approximately 0.7 trillion tokens), the model’s performance on these
tasks was negligible, indicating it had not yet acquired the atomic skills required to solve these
complex problems. However, once the training volume surpassed this critical threshold, the
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Task Baichuan-Audio Kimi-Audio Step-Audio2-mini MiMo-Audio
7B-Base 7B-Base 7B-Base 7B-Base

SpeechMMLU

S2S 31.9 11.8 51.8 69.1
S2T 29.9 67.9 67.8 69.5
T2S 16.7 0.0 63.4 71.5
T2T 71.1 70.7 74.1 72.5

MMAU

Overall 25.9 28.6 60.3 66.0
Speech 14.4 29.4 55.0 67.6
Sound 30.3 31.5 67.9 65.2
Music 32.9 24.8 58.1 65.3

Table 6 Results on SpeechMMLU and MMAU. We compare MiMo-Audio-7B-Base against Baichuan-
Audio-Base (Li et al., 2025), Kimi-Audio-Base (KimiTeam et al., 2025), and Step-Audio2-mini-
Base (Wu et al., 2025).

model’s performance underwent a sharp, non-linear surge, exhibiting a characteristic "phase
transition." Following this leap, performance continued to improve steadily before eventually
stabilizing, indicating that the model had fully mastered and consolidated this new ability.

This emergence of capabilities from a near-zero baseline, rather than through gradual improvement,
is a direct manifestation of the model autonomously developing advanced generalization abilities
through large-scale learning. This finding strongly supports our assertion that this represents a
"GPT-3 moment" for the speech domain: through sufficiently large-scale, lossless compression-
based pre-training, models can spontaneously learn to solve complex, previously unseen tasks,
thereby achieving task generalization.

Speech Intelligence MiMo-Audio model delivered exceptional performance in speech intelligence
tasks, with its superiority primarily manifested in two key dimensions: its SpeechMMLU score
and the magnitude of its "modality gap".

We use SpeechMMLU score to measure a model’s capacity to perform complex reasoning and
knowledge-based question-answering directly with speech as input or output. As shown in
Table 6, MiMo-Audio achieves the highest scores in both SpeechMMLU-S2S (69.1), SpeechMMLU-
S2T (69.5) and SpeechMMLU-T2S (71.5). Step-Audio2 mini-base achieved a relatively competitive
score in S2T (67.8) but its performance decrease to 51.8 in S2S, revealing significant fluctuations
across different speech tasks. Kimi-Audio-base fared moderately in S2T (67.9) yet exhibited
a critical weakness in S2S. Baichuan-Audio-base, meanwhile, posted consistently low scores in
both tasks (31.9 and 29.9). MiMo-Audio thus emerged as the only evaluated model capable of
sustaining high-level performance across all speech reasoning tasks.

The modality gap, a metric gauging the consistency of a model’s capabilities between speech
and text modalities, is calculated as the difference between a model’s text2text score and its
speech2speech (S2S) score. MiMo-Audio’s modality gap is 3.4 points, while Step-Audio2 mini-
base’s gap stands at 22.3 points, Kimi-Audio-base’s at 58.9 points, and Baichuan-Audio-base’s
at 39.2 points. The data confirms that MiMo-Audio boasts the smallest modality gap among all
models, which underscores that its architectural design is uniquely effective at preserving the
continuity of core reasoning capabilities across distinct input modalities.
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General Audio Understanding As shown in Table 6, MiMo-Audio demonstrated the superior
general audio understanding capabilities among current open-source models. This advantage is
reflected not only in its overall score but also in its balanced performance across all subtasks.

In terms of the MMAU overall score, MiMo-Audio achieved 66.0 points, which is 5.7 points higher
than Step-Audio2 mini-base (60.3 points), the second-place model. Compared to Kimi-Audio-base
(28.6 points) and Baichuan-Audio-base (25.9 points), MiMo-Audio’s score is significantly higher.
This lead in the total score intuitively reflects its overall performance superiority.

General audio understanding requires models to perform well across diverse audio types, and
MiMo-Audio excels with a balanced capability distribution. It achieved consistently high scores
across three subdomains: speech (67.6), sound effects (65.2), and music (65.3), with no obvious
performance shortcomings. In contrast, while Step-Audio2 mini-base obtained the highest score
in sound effects (67.9), it performed relatively poorly in speech (55.0) and music (58.1). The
Kimi-Audio-base and Baichuan-Audio-base models, meanwhile, scored consistently lower across
all subtasks.

Speech Task Generalization Figure 1 reports results for voice conversion and speech-to-speech
translation under the 16-shot in-context learning setting. For other speech-to-speech generation
tasks that are less amenable to automatic evaluation, we present qualitative demos3. We strongly
encourage readers to visit the demo page and listen to results. In Figure 1, few-shot prompting
reveals that the abilities of general speech-to-speech generation and modality-invariant general
knowledge (SpeechMMLU, T2S/S2S) emerge together at similar training scales. This alignment
suggests a shared underlying speech competence is emerging, enabling MiMo-Audio to generalize
to controlled transformations of fine grained factors such as speaker identity, emotion, and speaking
rate.

Speech Continuation We strongly recommend visiting the demo page to listen to our speech
continuation demos. As showcased on our demo page, across these varied contexts, MiMo-Audio-
Base can perform speech continuation for different scenarios—including Game Live Streaming,
Teaching, Recitation, Singing, Talk Show, and Debate—generating speech that features coherent
semantics, natural prosodic connection, consistent acoustic conditions, and scene relevance,
without requiring any parameter adaptation. Specifically, for singing speech, it can generate
consistent and pleasant vocal melodies; for talk show continuation, it can even produce audience
cheers at appropriate moments; for two-person debate continuation, it can generate two-person
speech with consistent viewpoints, coherent semantics, and smooth prosody; for dialect speech
continuation, it can generate content with consistent accents; for scenarios such as game live
streaming and teaching, it can generate highly expressive and colloquial speech, with volume
variations and colloquial expressions like stutters added at appropriate times; and for recitation
speech continuation, it can generate emotional speech with professional recitation quality. These
results indicate that through generative pretraining on large-scale, naturalistic audio recordings,
MiMo-Audio-Base has acquired comprehensive and generalizable audio knowledge, demonstrating
its potential for broader audio understanding and generation applications.

3https://xiaomimimo.github.io/MiMo-Audio-Demo
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4 Post-Training

4.1 Data

The objective of our post-training data strategy is to use a series of supervised instruction fine-
tuning datasets to activate the pre-trained model’s understanding and generation capabilities on
different tasks.

4.1.1 Audio Understanding

To activate the model’s audio understanding and reasoning capabilities, we integrated multiple
open-source datasets covering speech, sounds, and music. To address the problems of label noise
and singular task paradigms within the data, we designed a LLM-based pipeline for data cleaning
and augmentation. This ultimately generated a large amount of diverse audio understanding
data, such as audio captioning and audio question answering.

4.1.2 Speech Generation

To activate the model’s speech generation capabilities, we extracted a high-quality speech subset
from the pre-training data and constructed instruction data based on audio captions. The model
is required to generate matching audio according to this instruction. This training method is
intended to strengthen the model’s instruction-following capability and achieve controllable,
high-quality speech generation.

4.1.3 Spoken Dialogue

To activate the model’s ability to generate speech with diverse styles and high expressiveness
in different dialogue scenarios, we constructed a massive spoken dialogue dataset containing
single-turn and multi-turn conversations. These spoken dialogues consist of user queries and
assistant replies. The content is primarily sourced from rigorously screened text data to ensure
reliable quality.

To make MiMo-Audio adapt to diverse conversational styles, we first perform stylistic rewriting
on the colloquially adapted question-answer pairs. We then use the in-house MiMo-TTS system
to synthesize speech with appropriate style and emotion. During synthesis, we randomly select
prompt audio from a voice library containing a large number of timbres to ensure coverage of
different vocal expressiveness.

4.2 Training

In the post-training stage, all model parameters, including the patch encoder, LLM, and patch
decoder, are fine-tuned. For this, we curated a comprehensive training dataset of 100 billion
tokens, encompassing six distinct task formats: ASR, TTS, audio understanding, spoken dialogue,
instruction-following TTS, and text dialogue. While data for ASR, TTS, and text dialogue are
sourced from open-source collections, the remaining tasks utilized the high-quality datasets
detailed in Section 4.1.

The loss weights are 100 for text tokens and 12, 8, 6, 4, 2, 2, 1, 1 for audio tokens, consistent with
the second stage of pre-training. As specified in Table 3, we set the learning rates for the patch
encoder and decoder to 5e-5 and the LLM to 1e-5, respectively, with a cosine decay schedule. The
model is trained with a context length of 8192 and a batch size of 2.1M tokens.
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Task Type Dataset Input Modality Output Modality

ASR
AISHELL1 Speech Text

LibriSpeech test-clean Speech Text

TTS

SeedTTS test-Zh Text Speech
SeedTTS test-En Text Speech

InstructTTSEval-Zh Text Speech
InstructTTSEval-En Text Speech

Audio Understanding
and Reasoning

MMSU Speech+Text Text
MMAU Audio+Text Text
MMAR Audio+Text Text

MMAU-Pro Audio+Text Text

Spoken Dialogue

Big Bench Audio S2T Speech Text
Big Bench Audio S2S Speech Speech

MultiChallenge Audio S2T Speech Text
MultiChallenge Audio S2S Speech Speech

Table 7 Evaluation Settings of MiMo-Audio-7B-Instruct.

4.3 Evaluation

After post-training, we conducted a systematic evaluation of MiMo-Audio-7B-Instruct, covering
audio understanding, spoken dialogue, as well as speech recognition and generation. The specific
configurations for each task type are shown in Table 7. In the following sections, we provide a
detailed description of each task.

4.3.1 Audio Understanding

As a general-purpose audio model, we first assess the model’s general audio understanding
capabilities. Firstly, we adopt the MMSU (Wang et al., 2025) benchmark, which focuses on
multi-task spoken understanding. In addition to speech, we extend the evaluation to broader
audio understanding tasks involving sound and music, using the MMAU (Sakshi et al., 2025)
benchmark. To further assess the model’s audio reasoning capabilities, we also use MMAR (Ma
et al., 2025) and MMAU-Pro (Kumar et al., 2025), which evaluate the model’s capacity to handle
mixed audio inputs, such as speech, music, and environmental sounds, as well as its grasp of audio
knowledge.

4.3.2 Spoken Dialogue

Speech interaction is one of the most crucial modalities for human–computer communication. To
evaluate how well an audio-language model can follow user instructions and complete tasks in
multi-turn dialogues, following OpenAI4, we first assess the model’s performance on Big Bench
Audio5 (Srivastava et al., 2022; Suzgun et al., 2022) , a benchmark designed to measure the
intelligence level of audio-language models. The response quality scores are derived from GPT-
based evaluations. For spoken responses, the audio is first transcribed using the Whisper-Large-V3
(Radford et al., 2023) model and then evaluated by GPT-4o-mini.

Next, to evaluate how well the model can handle more complex dialogues, we use the MultiChal-
lenge (Sirdeshmukh et al., 2025) dataset. This dataset requires models to generate appropriate

4https://openai.com/index/introducing-gpt-realtime/
5https://huggingface.co/datasets/ArtificialAnalysis/big_bench_audio
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Datasets Model Performance

Audio Understanding

MMAU
Speech | Sound | Music | Overall

MiMo-Audio-7B-Instruct 68.47 | 82.58 | 73.65 | 74.90
Gemini 2.5 Flash 76.58 | 73.27 | 65.57 | 71.80
Audio Flamingo 3 66.37 | 79.58 | 66.77 | 73.30
Step-Audio2-mini 68.16 | 79.30 | 68.44 | 72.73
Kimi-Audio-Instruct 62.16 | 75.68 | 66.77 | 68.20
Qwen2.5-Omni 70.60 | 78.10 | 65.90 | 71.50
GLM-4-Voice 35.44 | 27.63 | 27.84 | 30.30

MMAU-Pro

MiMo-Audio-7B-Instruct 53.35
Gemini 2.5 Flash 59.20
Audio Flamingo 3 51.70
Step-Audio2-mini 47.91
Kimi-Audio-Instruct 46.60
Qwen2.5-Omni 52.20
GLM-4-Voice 38.25
GPT-4o-Audio 52.50

MMAR

MiMo-Audio-7B-Instruct 63.60
Gemini 2.5 Flash 65.60
Audio Flamingo 3 58.50
Step-Audio2-mini 55.80
Kimi-Audio-Instruct 48.00
Qwen2.5-Omni 56.70
GLM-4-Voice 29.50
GPT-4o-Audio 63.50

MMSU
Perception | Reasoning | Overall

MiMo-Audio-7B-Instruct 46.86 | 76.98 | 61.70
MiMo-Audio-7B-Instruct +Think 51.71 | 74.79 | 62.88

Gemini 1.5 Pro - | - | 60.70
Audio Flamingo 3 - | - | 61.40
Step-Audio2-mini 42.71 | 72.60 | 57.18
Kimi-Audio-Instruct 44.84 | 75.70 | 59.78
Qwen2.5-Omni 42.67 | 77.64 | 58.10
GLM-4-Voice 11.04 | 16.16 | 13.30

Spoken Dialogue

Big Bench Audio
S2T | S2S

MiMo-Audio-7B-Instruct 72.90 | 60.20
gpt-4o-audio-preview-2024-12-17 70.20 | 67.20

Step-Audio2-mini 50.90 | 47.50
Kimi-Audio-Instruct 59.40 | 51.00
Qwen2.5-Omni 54.20 | 53.60
GLM-4-Voice 44.80 | 42.70

MultiChallenge Audio
S2T | S2S

MiMo-Audio-7B-Instruct 15.15 | 10.10
Step-Audio2-mini 13.64 | 8.08
Kimi-Audio-Instruct 7.07 | 1.01
Qwen2.5-Omni 11.11 | 8.08
GLM-4-Voice 9.09 | 6.06

Table 8 Results on audio understanding and spoken dialogue benchmarks. Bold indicates the
best performance overall, and underline marks the best among open-source models. +Think
indicates turning on thinking.
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Datasets Model Performance

TTS

Seed-TTS-Eval
ZH | EN | ZH-Hard

MiMo-Audio-7B-Instruct 1.96 | 5.37 | 14.14
Step-Audio2-mini 2.13 | 3.18 | 16.31

Instruct-TTS

InstructTTSEval-EN
APS | DSD | RP | Overall

MiMo-Audio-7B-Instruct 80.60 | 77.63 | 59.54 | 72.59
GPT-4o-mini-tts 76.40 | 74.30 | 54.80 | 68.50

InstructTTSEval-ZH
APS | DSD | RP | Overall

MiMo-Audio-7B-Instruct 75.74 | 74.3 | 61.54 | 70.52
GPT-4o-mini-tts 54.90 | 52.30 | 46.0 | 51.07

ASR

ASR
Librispeech-test-clean | AISHELL

MiMo-Audio-7B-Instruct 3.76 | 1.78
Step-Audio2-mini 1.87 | 0.95
Kimi-Audio-Instruct 2.13 | 0.62

Table 9 Results on the ASR and TTS benchmarks.

responses for the final turn, based on the preceding dialogue history.

Since MultiChallenge was originally a text-based multi-turn interaction benchmark, we convert it
into a speech-based version through the following steps:

• Filter out samples containing excessive mathematical symbols, tables, URLs, or other non-
spoken formats.

• Convert the remaining samples into speech using a commercial TTS model. Utterances from
the same speaker within a sample are synthesized with a consistent voice, selected from a
pool of 250 voices.

This results in two speech versions of MultiChallenge Audio: S2T (speech-to-text) and S2S (speech-
to-speech). In the S2T version, the dialogue history is presented as text, while in S2S, it is entirely
in speech.

4.3.3 Speech Recognition and Generation

As a native audio-language model, speech recognition and speech generation form the foundation
for enabling more advanced speech tasks. To this end, we compare MiMo-Audio-7B-Instruct
with other audio-language models (Xu et al., 2025; KimiTeam et al., 2025; Wu et al., 2025) on
automatic speech recognition (ASR) and text-to-speech (TTS) tasks.

For ASR, we evaluate using the widely adopted LibriSpeech (Panayotov et al., 2015) test-clean set
for English and the AISHELL-1 (Bu et al., 2017) test set for Chinese. The ASR task is evaluated
using Word Error Rate (WER) as the metric.

Beyond recognition capabilities, we also evaluate the speech generation ability of MiMo-Audio-7B-
Instruct. We first assess the TTS performance of MiMo-Audio-7B-Instruct on the SeedTTS (Anastas-
siou et al., 2024) benchmark, which includes both English and Chinese subsets, as well as a more
challenging hardcase subset for Chinese. In addition to conventional TTS evaluations, we conduct
more advanced assessments on the InstructTTSEval (Huang et al., 2025) benchmark, which
measures the ability of models to follow complex natural-language style control instructions to
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syntheses the corresponding speech, thereby jointly evaluating fidelity and expressive generation.
For TTS tasks, we adopt WER as a basic evaluation metric, where synthesized speech is first
transcribed by an ASR model (Radford et al., 2023; Gao et al., 2023) and then compared against
the reference text. Moreover, InstructTTSEval leverages Gemini-based scoring to further assess
the alignment between the generated speech and the input instructions.

4.4 Results

Audio Understanding For the audio understanding tasks, as shown in Table 8, the results on
the MMSU and MMAU benchmarks demonstrate that MiMo-Audio-7B-Instruct achieves leading
performance in speech, audio, and music question answering. The overall scores on these two
benchmarks outperform all open-source models, as well as closed-source models like Gemini 2.5
Flash and Gemini 1.5 Pro.

For more challenging audio reasoning tasks, MiMo-Audio-7B-Instruct also leads on the MMAU-Pro
and MMAR benchmarks, achieving results that are close to Gemini 2.5 Flash. These results
collectively demonstrate that MiMo-Audio-7B-Instruct is a general-purpose and powerful audio
understanding model.

SpokenDialogue As shown in the Table 8, MiMo-Audio-7B-Instruct achieves the best performance
among all open-source models across both the Big-Bench-audio and Multi-Challenge-Audio tasks,
and its results are close to those of the proprietary model gpt-4o. On the Big-Bench-audio
benchmark, MiMo-Audio-7B-Instruct scores 72.90 (S2T) and 60.20 (S2S), ranking second only
to gpt-4o while significantly outperforming all other open-source models. Similarly, on the
Multi-Challenge-Audio benchmark, it achieves 15.15 (S2T) and 10.10 (S2S), again leading
the open-source group by a notable margin. In summary, MiMo-Audio-7B-Instruct not only
outperforms all other open-source models by a wide margin, but also narrows the gap with the
state-of-the-art proprietary model gpt-4o, demonstrating strong competitiveness and practical
potential. We encourage you to visit our demo page6 to explore our speech-to-speech dialogue
demos. Our model demonstrates strong human-likeness and expressive conversational abilities,
along with solid performance in knowledge understanding, emotional intelligence, dialogue skills,
and instruction following. It also supports dialects and multilingual communication.

Speech Recognition and Generation As shown in Table 9, MiMo-Audio-7B-Instruct demonstrates
strong performance in both ASR and TTS tasks among open-source large speech models. On the
ASR and TTS benchmarks, it achieves similar results to other open-source models such as Step-
Audio2-mini and Kimi-Audio-Instruct. In the InstructTTS evaluation, MiMo-Audio-7B-Instruct
outperforms gpt-4o-mini-tts on both English and Chinese subsets, with especially competitive
results on overall metrics. These results highlight MiMo-Audio-7B-Instruct’s effectiveness in
controllable text-to-speech generation, positioning it as a leading open-source solution in this
space.

5 Conclusion

In this work, we have demonstrated that scaling next-token prediction pre-training on massive-
scale, lossless audio data is a viable path toward achieving general-purpose speech intelligence.
By pre-training on an unprecedented corpus of over 100 million hours, MiMo-Audio successfully

6https://xiaomimimo.github.io/MiMo-Audio-Demo
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transcends the limitations of task-specific fine-tuning that characterize existing audio language
models.

Our primary contribution is the empirical validation that a "GPT-3 moment" is achievable in
the speech domain. We observed the distinct emergence of powerful few-shot learning ca-
pabilities after crossing a critical data threshold, enabling the model to generalize to a wide
array of tasks—including complex voice conversion, style transfer, and speech editing—without
task-specific training. Furthermore, we presented a comprehensive blueprint for this paradigm,
encompassing a novel unified high-fidelity audio tokenizer, a scalable architecture, and a phased
training strategy. MiMo-Audio-7B-Instruct achieves state-of-the-art performance on multiple
benchmarks and rivals closed-source systems.

Ultimately, this research provides a foundational methodology for building truly versatile audio
language models. We believe this work marks a significant step towards creating more natural,
flexible, and intelligent systems that can understand and generate speech with human-like
adaptability.

6 Limitations and Future Work

Limited In-Context-Learning Performance The in-context learning capability of MiMo-Audio-
Base remains constrained. While the pre-trained model can fulfill a variety of novel tasks beyond
the scope of its pre-training via in-context learning, it exhibits suboptimal performance in certain
scenarios—such as speech generation with background music and the processing of complex
sound events. Moving forward, we aim to enhance MiMo-Audio’s capability in general audio
generation.

Unstable Spoken Dialogue Performance MiMo-Audio-Instruct demonstrates several limitations
in speech dialogue, including timbre discontinuities, unstable audio quality, mispronunciations,
and inconsistent compliance with system prompts. Notably, it is highly prone to mispronouncing
complex symbols and formulas, and its style control during dialogue is also unstable. In future work,
we will leverage reinforcement learning (RL) to improve the stability of the model’s performance.

Limited Thinking Performance When integrating the thinking mechanism, MiMo-Audio-Instruct
yields performance improvements exclusively in speech-related understanding tasks, whereas
it induces performance degradation in sound and music understanding tasks. Our analysis of
failure cases (bad cases) reveals that this phenomenon stems from hallucinations introduced by
the model during the thinking process. Going forward, we plan to enhance the model’s audio
understanding capability through reinforcement learning (RL).
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