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Recent advancements in large language models (LLMs) have significantly improved code generation, which
generates code snippets automatically based on natural language requirements. Despite achieving state-of-the-
art performance, LLMs often struggle to generate accurate and reliable code, requiring developers to spend
substantial effort debugging and evaluating the generated output. Researchers have proposed leveraging
Consistency to select code that passes more tests (inter-consistency) and demonstrates consistent behavior
across more counterparts (intra-consistency). However, since the tests themselves are also generated by LLMs,
relying on majority voting based on incorrect tests leads to unreliable results. To address this, we propose
a lightweight interaction framework that incorporates user feedback to effectively guide consistency. Our
results demonstrate that, with minimal human effort, performance can be significantly improved. In each
iteration, we introduce a rank-correct-fix co-evolution process between code and tests. This process iteratively
enhances the quality of both, making the consistency voting between code and tests more reliable.

We evaluate CONTESTED through extensive experiments, demonstrating its effectiveness across multiple LLMs,
including GPT-3.5 and GPT-40. Our results show improvements of 32.9% over GPT-3.5 and 16.97% over GPT-4o.
Additionally, CONTESTED achieves an 11.1% improvement over the SOTA post-processing technique, MPSC.
This improvement is achieved with only a 4-round interaction with users, requiring minimal user effort. A
user study further confirms the feasibility and cost-effectiveness of CONTESTED, highlighting its ability to
enhance code generation without introducing substantial overhead.
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1 Introduction

Code generation techniques automatically generate code snippets that implement desired function-
ality based on natural language requirements. These techniques can reduce the effort required by
developers to write code and improve development productivity, as extensively studied in the liter-
ature [6, 16, 18, 35]. Recent progress in large language models (LLMs) have significantly impacted
the field of code generation. Researchers have introduced various LLMs [2, 11-13, 15, 19, 21, 24]
(e.g., GPT-4 [2], DeepSeek-Coder [13], and CodeGen [24]) that achieve SOTA performance, due to
their massive parameter scales and pre-training on extensive code-specific corpora.

Although LLMs have shown impressive performance, their outputs are not always reliable.
Enhancing the reliability of LLM-generated results is crucial, because developers often invest
significant effort to identify and correct errors in the generated code. To increase the reliability of
LLM-generated results, Consistency[5, 14, 34, 39, 40, 44] has been proposed as an effective, light-
weight technique. It generates multiple solutions for each input query and then uses a majority
voting to determine the final answer, improving consistency and reliability. Consistency is founded
on the assumption that the tasks generally have multiple reasoning paths leading to a correct
answer [33]. By incorporating diversity, Consistency increases the likelihood that a consistent result
is correct, as the chance of multiple approaches making the same error is low. Consistency helps mit-
igate the randomness, thereby improving output reliability and boosting performance [34, 38—40].
Other post-processing techniques that aim to enhance the reliability of LLMs are generally more
resource-intensive compared to Consistency. Some approaches, for example, require training addi-
tional verifiers [9, 23] or re-rankers [36] to validate LLM outputs. These methods require separate
model training, and the reliability of their results may still be questionable. In contrast, Consistency
operates without the need for additional training or auxiliary models. Recently, Consistency has
been applied to code generation tasks [5, 14], where the diversity of coding approaches—including
various APIs, algorithms, and programming paradigms—offers multiple perspectives for applying
consistency.

While Consistency improves the reliability of code generated by LLMs, existing approaches face a
key limitation. They overlook the preconditions required for the effective use of Consistency, and relying
on Consistency alone is insufficient to guarantee the reliability of LLMs. Specifically, the effectiveness
of Consistency depends on the quality of the consistency indicators used to assess consistency. Since
consistency indicators are also generated by LLMs, they can be erroneous, leading to unreliable
Consistency and majority voting. Relying solely on consistency is insufficient to address this issue.
Current techniques primarily focus on using tests or specifications as consistency indicators [5, 14],
measuring inter-consistency and intra-consistency based on the number of passing tests and
functionally equivalent counterparts. As shown in Fig. 3b (which will be discussed in detail in
Section 2), codes in group 1 are selected because they pass more tests and have more functionally
equivalent counterparts that pass the same set of tests. However, the tests generated by LLMs
frequently contain errors, with an average error rate of 37.7% across three widely used code
generation datasets, as observed in our experiments. This high error rate significantly reduces the
effectiveness of Consistency. A buggy code that passes a higher number of erroneous tests may be
mistakenly considered as reliable or correct. However, existing techniques neglect this issue when
implementing Consistency. It is therefore essential to enhance the quality of consistency indicator
prior to leveraging consistency. Furthermore, existing techniques make limited use of Consistency.
Relying solely on majority voting provides only a superficial application of Consistency. There
are additional ways to leverage Consistency, such as using inconsistency to identify potential
problems. Once identified, these problems can be fixed to enhance reliability. Moreover, all existing
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Fig. 1. CoNTESTED built on GPT-3.5 surpasses the SOTA general LLM GPT-40 and the SOTA post-processing
technique MPSC on all datasets.

consistency-based techniques lack post-processing steps and simply select a single output. However,
the candidate codes might still need additional adjustments.

In this work, we propose CONTESTED, i.e., Consistency-Aided Tested Code Generation, which
introduces a lightweight interaction framework to gather user feedback and a co-evolution process
to enhance both code and test quality iteratively. CONTESTED has two ingredients that distinguish
it from existing approaches. Firstly, it involves developers as the ultimate oracles. Since both the
code and tests are generated by LLMs, there may be errors in either, making it difficult to assess
the correctness of the tests based solely on these generated components. Therefore, integrating
user feedback is essential to improve the reliability of LLM outputs. To minimize developer efforts,
CoNTESTED focuses their involvement on correcting test cases, which is generally easier than
fixing the code itself. Additionally, we aim to reduce the number of feedback rounds by leveraging
consistency voting from code to tests (Con._,;), helping to identify tests most likely to contain
errors. As a result, the average number of iteration rounds is reduced to just 4, achieving a 33%
improvement compared to the baseline model. Secondly, we propose a dynamic strategy to fix and
maintain a set of consistent tests and code candidates. CONTESTED operates iteratively through a
rank-correct-fix co-evolution process, where both code and test quality are gradually enhanced.
This incremental improvement enhances the accuracy of both the consistency voting from code to
tests and the consistency voting from tests to code, facilitating more reliable code selection and
more precise identification of incorrect tests. The co-evolution process terminates once a code that
passes all tests is identified. Due to the high quality of the tests, the resulting code is inherently
more robust and reliable.

We conduct a comprehensive evaluation of CONTESTED. First, we assess its effectiveness in
enhancing LLM code generation. With a suboptimal model, GPT-3.5, CONTESTED achieves an
average improvement of 32.9% over GPT-3.5, an 11.1% improvement over the state-of-the-art
post-processing technique, MPSC[14], and a 12.32% improvement over the most advanced LLM,
GPT-4o, as shown in Fig.1. This improvement is achieved with only a 4-round interaction with users,
requiring minimal user effort. Additionally, CONTESTED demonstrates consistent improvements
when built on the state-of-the-art LLM GPT-4o (by 16.97%) and even on the reasoning LLM OpenAl
o1 (by 8.85%). We also conduct a user study and examine the overhead of CONTESTED in terms of
time and cost.
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First-Ranked Solutions:

Problem Instruction: def can_arrange (arr):

Create a function which returns the largest index of an element which n = len(arr)

is not greater than or equal to the element immediately preceding it. If largest_index = -1

no such element exists then return -1. The given array will not contain for i in range(l, n):

duplicate values. if arr[i] < arr[i-1]:
[largest index = i-T1]

Examples: return largest_index

can_arrange([1,2,4

,3,5]1) =3
can_arrange([1,2,3]) =

-1

Second-Ranked Solutions:

Ground Truth Solution: def can_arrange(arr):
last = arr[0]
def can_arrange(arr): . _
ind=-1 index = -1
i=1 length = len(arr)
while i<len(arr): for i in range(l,length):
if arr[i]<arr[i-1]: if arr[i] >= last:
last = arr[i]
i+=1 else:
return ind index = i - 1
return index
(a) Problem Instruction (b) Top-Ranked and Second-Ranked Solutions

Fig. 2. The motivating example for limitations of relying solely on consistency (HumanEval/135)

In summary, this paper makes the following contributions:

o A lightweight interaction framework, which incorporates the user feedback to correct the
identified tests and guide the iterative process, resulting in an improvement of 33% towards the
base model and 12% towards GPT-4o0 with only 4 rounds of iteration.

o A rank-correct-fix co-evolution process that leverages two forms of consistency voting,
with gradually improving code and tests that enhance the reliability of consistency.

¢ A finding on consistency techniques that they often overlook preconditions when applying
consistency, which can lead to unreliable results.

e A comprehensive evaluation, which evaluates CONTESTED from both quantitative experi-
ments and a user study.

2 Motivation

In this section, we introduce the motivation for our work, highlighting that consistency can
effectively enhance the reliability of LLM-generated outputs. However, relying solely on consistency
is insufficient. First, although the most consistent outputs are more likely to be correct, they may
still contain issues. Second, if the consistency indicators used to assess consistency are of low
quality, the resulting consistency will be unreliable.

2.1 Effectiveness of Consistency and Limitations of Relying Solely on It

Firstly, we discuss the effectiveness of consistency and the limitations of relying solely on it. In
Fig. 2a, we present the instructions for HumanEval/135, that is, “finding the largest index of an
element that is less than the previous element” In Fig. 2b, we display the solutions generated by
LLMs. The left side represents the solution set with the highest consistency. This set contains the
most functionally equivalent counterparts and passes the majority of tests. On the right are other,
less consistent solutions. The first-ranked solution on the left is very close to the ground truth
solution; its overall logic is correct, but the selected index is slightly off. In contrast, the solution on
the right is algorithmically incorrect. This demonstrates the effectiveness of consistency in helping
us identify solutions that are more likely to be correct.
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Problem Instruction:

Imagine an infinitely long straight road with two sets of n cars. One set of
cars is moving from left to right, and the other set is moving from right to
left. All cars move at the same speed, and they start far apart. When a left-
moving car meets a right-moving car, they collide but continue moving as
if nothing happened.

Group 1

Please write a function to output the number of such collisions.

_— Collision —

Ground Truth Solution:
def num_collision(n: int):
return n**2 Tests Codes

(a) Problem Instruction (b) Testing Results

Fig. 3. The motivating example illustrating the consequences of ignoring the prerequisite required for
consistency (HumanEval/41)

Although consistency can increase confidence in selecting correct solutions, relying solely on
it is insufficient. While the first-ranked solutions are close to correct, none are entirely accurate;
in fact, all generated code for this problem is incorrect. Therefore, beyond consistency, additional
post-processing of the generated code is necessary. All existing consistency-based techniques lack
post-processing steps and simply select a single output. In this paper, we focus on fixing the code
using tests corrected with user feedback. In this example, after just two correction steps, we obtain
accurate and consistent codes. Notably, 66.7% of the final correct solutions originate from the
initially top-ranked group, as nearly correct code is easier to fix than entirely incorrect code.

2.2 Consequences of Neglecting Consistency Preconditions

In addition to the need for further processing of outputs obtained through consistency, there
are instances where consistency leads to incorrect results when the consistency indicator (in
this case, tests) are of low quality. Existing techniques frequently overlook these prerequisites for
effectively utilizing consistency. Specifically, the assessment for consistency relies on relatively good-
quality consistency indicators; without this, consistency achieved through inaccurate consistency
indicators is unreliable, leading to potentially incorrect outputs. To illustrate, consider an example
from HumanEval [7], as shown in Fig. 3 (HumanEval/41). The left side (Fig. 3a) presents the problem
description and a ground truth solution, while the right side (Fig. 3b) shows simplified testing
results. In this case, the top-ranked group, containing 34 tests and 44 codes (simplified as Group
1 in Fig. 3b), ranks highest by consistency, while a group of 2 tests and 2 codes (simplified as
Group 3) ranks lowest. To simplify the graph, we omit Group 2, which consists of the 3-rd code
and the 4-th and 5-th tests. The highest-ranked group passes the most tests and contains the most
functionality-equivalent counterparts, selected as the final output by existing techniques[5, 14].
However, all codes in this group are incorrect, while the correct codes are ranked last. This mistake
arises because most tests passed by the top group (32 out of 34) are incorrect. Fig. 3b illustrates
this with a simplified testing results: here, Group 1 of 4 tests and 2 codes are all incorrect, while
the correct code “n ** 2” only passes one test. Therefore, when test quality is low, majority
voting based on testing results is unreliable, a limitation overlooked by current methods. Existing
techniques[5, 14] that rely solely on consistency are unable to select correct answers due to the
lowest consistency level of the correct answers. Thus, incorporating user feedback is essential to
enhance test quality and reliability.

We leverage consistency voting from codes to tests Con._,; to identify the most inconsistent
test—that is, the test that most codes fail to pass. In this example, the identified test is the sixth
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Fig. 4. The overview of CONTESTED

test in Fig. 3b. We then prompt users to correct the output, which they adjust from “23” to “81”
based on the instruction requirements. With this corrected test, we can identify the codes that fail
it and fix these codes. Here, the initially top-ranked codes fail this test, while the lowest-ranked
codes pass. After this fixing, codes that cannot be fixed are discarded. With just one step of user
feedback and code fix, all remaining codes align perfectly, producing consistent outputs across all
tests. CONTESTED demonstrates promise by achieving correct results with only minimal human
interaction.

3 Approach

In this paper, we introduce a new consistency-aided technique, CONTESTED, which incorporates a
lightweight interaction framework to gather user feedback and a co-evolution process to iteratively
enhance the quality of both tests and codes. An overview of the workflow of CONTESTED is illustrated
in Fig. 4. CoNTESTED has two ingredients that distinguish it from existing approaches. Firstly, the
developers are involved as the ultimate oracle, and we propose a lightweight interaction framework
that incorporates user feedback to correct the identified tests and guide the iterative process.
Secondly, CONTESTED uses a rank-correct-fix co-evolution process in each iteration to gradually
improve the quality of both code and tests, which makes Con._,; and Con,_,. increasingly reliable.
In the end, we achieve a more reliable code through improved consistency. In the following, we
introduce the details of CONTESTED. Specifically, we will introduce the task definition in Section 3.1,
the overall interaction framework in Section 3.2, and the specific co-evolution process in each
iteration in Section 3.3.

3.1 Task Description

Assumption. Firstly, the use scenario of CONTESTED is that when the users have a requirement in
natural language and leverages CONTESTED to help implement the code. Following the standard
practice outlined by the HumanEval benchmark creators [7] and all existing techniques [5, 13—
15, 19, 21, 26, 27, 30], we assume the problem description d and the method signature s are provided
as input for CONTESTED. Developers often begin by defining method signatures. It is essential
to clearly define the input and output types. This aids in the creation of test cases, clarifies the
overall program structure and the scope of each function, and enhances communication among
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team members. Although natural language descriptions can serve this purpose, using a method
signature is more precise and straightforward. Secondly, each benchmark provides a hidden test
set to assess the correctness of the generated code, and these tests remain unseen during the code
generation process. The hidden tests are only used to assess the results, and revealing them would
expose the ground truths to LLM. The problem we aim to solve is code generation, where the
input is solely a natural language problem description. This typical code generation task has been
addressed in many prior works [5, 13-15, 19, 21, 26, 27, 30]. Therefore, there are no ground truth
test cases provided as input. If we choose to use tests to assist in generating code, we would need
to generate these tests ourselves based on the problem description, similar to the SOTA techniques
MPSC, CopkT, and our proposed approach.

Problem Definition. We introduce the definition and setup of this task, that is, leveraging consis-
tency to improve LLM code generation results. First of all, in our paper, “code” refers specifically to
production code and does not include test case code. “Test” refers to test case code, typically in
the form of assertions, such as “assert method_name(...) == ..”. The code generation task aims to
generate a code solution, c, based on a problem description, d, using a large language model, M.
Formally, this is represented as ¢ = M(d). The problem description, d, provides the requirements in
natural language and includes the function signature, specifying the function name and parameters,
as shown in the example in Fig 2a. Generating correct code in a single attempt is challenging for
LLMs [5, 14]. To address this, researchers propose sampling multiple code solutions from LLMs,
denoted as C = {1, ¢a, ..., ¢}, and obtaining a code ¢ based on C that is more likely to be correct. In
addition to generating code, researchers also use the same LLM, M, to generate a set of tests, T =
{t1, t, ..., t}, to aid in obtaining the best code, ¢. These tests, T, serve as consistency indicators to
evaluate the consistency of the generated codes, C. A test case ¢ is defined as a pair of input and
expected output (i.e., t = (x,y)), which verifies whether the output of the code ¢ meets the require-
ments specified in the problem description d. Existing consistency-based LLM code generation
methods [5, 14] work by selecting the code that passes the most tests (inter-consistency) and has the
highest number of functionally equivalent counterparts (intra-consistency). However, this approach
can be problematic: while tests help verify code correctness, they may also be incorrect since
they are generated by the same LLM. In this paper, we introduce a new consistency-augmented
technique, CoNTESTED, which incorporates an interaction framework to gather user feedback F=
{f1, f2, ..., fx} and a co-evolution process to iteratively enhance the quality of both tests and codes.
In our approach, the input and output are defined as ¢ = CoNTESTED(C, T, F).

3.2 Lightweight Interaction Framework to Gather User Feedback

In this section, we present the overall framework of CONTESTED. CONTESTED is a lightweight
interaction framework that collects user feedback to correct identified tests and guide the iterative
improvement process. To satisfy the prerequisite necessary for consistency, we incorporate user
feedback in a developer-friendly, lightweight manner. In our task, tests act as consistency indicators
that verify code correctness and assess consistency. However, our experiments reveal that 37.7% of
tests generated by the LLM are incorrect. With only the tests T and the codes C, we cannot ensure
test accuracy or determine their correct outputs, as both tests and codes are generated by the same
LLM, making them potentially unreliable. Additionally, in many cases, only the developer can
determine the correctness of specific test results. In real-world development, users must ensure the
correctness of tests; otherwise, the quality of the code may be compromise. Keeping the developer in
the loop also fosters a sense of code ownership and ensures that they maintain a clear understanding
of the code generation process, enabling them to respond more swiftly to future bugs. Therefore,
integrating user feedback is essential—a need also supported by many studies [8, 25].
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Fig. 5. The co-evolution process of CONTESTED

However, it is crucial to minimize the need for developer consultation. First, we aim to simplify
the questions users need to answer. Therefore, CONTESTED prompts users to check and correct the
tests rather than directly fixing the code. In other words, the feedback we ask users to provide is the
correction to the tests. As shown in Fig. 7a, we provide the prompt to correct the tests. Given the
problem description and input, users only need to provide the correct output as feedback. Second,
we limit the user check to the fewest possible rounds. To achieve this, we use consistency voting
from codes to tests (Con.;) to identify tests that are passed by fewer codes, as these are more
likely to contain errors. Following existing work [5, 14], we formalize the consistency relationship
between code c and test ¢ as

True,c(x) =y
1

False,c(x) #y W
Tests and codes are implementations of the same problem requirements from two different per-
spectives. The code c and the test ¢ are considered consistent when c passes t, indicating that the
functionality aligns from both perspectives. The consistency voting Con._,; represents the degree
of consistency between each test ¢ and the entire code set C, serving as a measure of the test’s
reliability from the perspective of the codes and is denoted as

Cone—(t,C) = Z Con(t,c) (2)

Con(c, t) = Con(c, (x,y)) = {

The lower the consistency voting (Con.,;), the more likely it is that the test is incorrect. We rank
the tests based on Con._,; and select the most inconsistent test for correction, which can enhance
the quality of both the test set and code set and thus reduces the number of iteration rounds.
Additionally, when the test is consistent with all codes—i.e., Con._,;(t, C) = size(C)—we skip the
correction process and directly use the code outputs as the test output. Although individual codes
may be incorrect, the likelihood of all codes producing the same incorrect result is low. In addition,
as iterations proceed, code quality steadily improves, making consistency voting increasingly
reliable. By leveraging these two methods, we decrease the number of iteration rounds and reduce
the need for human feedback. With the support of consistency, the average number of iteration
rounds is reduced to just 4, with an improvement of 33% to the base model.

3.3 Co-Evolution Process between Codes and Tests

In Section 3.2, we introduced the overall interaction framework. Here, we detail the specific process
within each iteration. Fach iteration leverages a rank-correct-fix co-evolution process between
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codes and tests to iteratively improve their quality, as illustrated in Fig.5. The co-evolution algorithm
is outlined in Algorithm 1.

Before initiating the co-evolution process between code and test cases, we first need to generate a
set of tests, denoted as T, and a set of codes, denoted as C. As shown in Algorithm 1, these sets serve
as the input for the subsequent co-evolution process. The prompts used for generating these codes
and tests are illustrated in Fig 7. To ensure a fair comparison, we employ the same prompts as those
used in the state-of-the-art post-processing techniques. These prompts are straightforward and
directly instruct the models to generate tests and codes. The prompt for generating code consists
of two parts: the first part is an instruction for LLM to generate codes, and the second part is the
problem description. When generating tests, an additional component is included: the format for
the test, which is specified as “assert method_name(...) == ...”. We adopt a high temperature for LLM
(0.8 in this paper) to ensure that the models generate sufficiently diverse codes and tests.

During the co-evolution process, we employ two types of consistency voting. The consistency
voting from codes to tests (Con._,;) identifies tests most likely to be erroneous, as discussed in
Section 3.2. The consistency voting from tests to codes (Con,_,.) selects the code consistent with
all tests and, therefore, most likely to be correct—i.e., the code that passes all tests, serving as the
process’s termination condition. Through this interaction, codes and tests co-evolve, enhancing
each other. The tests help identify erroneous cases, and once corrected, they further aid in refining
the codes. As the quality of both codes and tests improves, the reliability of Con,_,; and Con,_,
increases. Higher-quality codes make it more likely that tests they cannot pass are buggy, while
improved tests increase the likelihood that codes passing more tests are correct.

Next, I will provide a detailed introduction to the co-evolution algorithm, using Algorithm 1
and Fig. 5 to offer a more intuitive explanation. As shown in Algorithm 1, the input consists of
the test set T and code set C generated by the LLM M, with the output being a more reliable and
accurate code, ¢, than any individual code in C. Before the algorithm begins, each code is executed
on each test to gather execution information. We obtain the information whether each code can
pass each test. The entire execution process includes both compiling and executing the code, and
failure at either stage results in an overall failure. This process is efficient, as it can be parallelized.
Next, we compute the consistency voting between codes and tests, as illustrated in Equation 1 and
Equation 2. The main body of the algorithm consists of iterations, where tests are divided into two
groups: corrected tests, Tcor, and unknown tests, Tynk. The iteration terminates once all unknown
tests are corrected or a code that passes all tests is found. Each iteration involves a rank-correct-fix
co-evolution process between codes and tests, divided into three stages: “ranking”, “correcting”,
and “fixing”.

Ranking. The first stage, "ranking," is outlined in Line 3 of Algorithm 1. As already introduced
in Section 3.2, we leverage the consistency voting from codes to tests (i.e., Con._,;) to rank the tests
and identify the one most likely to be incorrect, i.e., the test passed by the fewest codes, denoted
as ty. As the co-evolution process iterates, the quality of codes improves, leading to increasingly
accurate identification of incorrect tests. As shown in Stage 1 of Fig. 5, t4 has three codes that pass
it, t3 and t, have two codes that pass each, and t; only has one code that passes it. Based on the
consistency voting from codes to tests, Con._;, t; is most inconsistent with the codes, making it
more likely to contain an error and thus selected.

Correcting. In Line 4-5, describes the second stage, “correcting”, where we utilize an interaction
process to incorporate user feedback. Specifically, the feedback we request from users is the
correction of the tests. Given the problem description and input, users only need to provide the
correct output as feedback. Once corrected, t is updated to teor. tecor Will then be removed from
the unknown tests group Tynk and added to the corrected tests group T¢o,. As shown in Stage 2 of
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Algorithm 1: Co-Evolution Algorithm between Codes and Tests

Input: test case set T; code set C

1 Tynk < T; Teor «— {}; Cais < {}; > initializing sets
2 while true do

3 by « argmax;ct Cone—(t,C) ; > rank and localize a worst test case
4 teor < InteractivelyCorrectTestCase(ty); > interactively correct the worst test case
5 Tynk-remove(ty); Teor-add(teor);

6 Crem < {};

7 for c € Cdo

8 if Con(tcor, c) then

9 | Crem.add(c);

10 else

11 ¢’ « LLMFixCode(c) ; > fix the code by LLM
12 if Cony—¢(Teor ¢’) = size(T¢or) then

13 L Crem.add(c’);; > the fixed code can pass all the corrected tests
14 else

15 L Cgis-add(c’);

16 if Crem.isEmpty() then > if no code passes corrected test cases
17 L return argmaxcc,. Cons—e(Tyunk Y Teor, €);

18 C «— Crem ;

19 if T . isEmpty() then > if all test cases are corrected
20 L return argmax,cc Cons—¢(Teor, €);

21 for c € Cdo > find a code that passes all test cases
22 if Cons—c(Tyngk U Teor, ) = size(T ke U Teor) then

23 L return c;

Fig. 5, t; is updated to t/l. This test is then removed from the unknown set T, and added to the
corrected set T¢or. Once corrected, we also update the consistency relationships between tests and
code. This stage produces the first update of the consistency voting results, making the consistency
voting from tests to code Con;_,. more reliable. As shown in Fig.7a, we present the prompt used to
correct tests. In Section 4.1, we will introduce a setting where OpenAlI o1 is used to simulate user
feedback (i.e., correcting the tests), with this prompt provided to OpenAlI o1. The prompt consists of
three parts: (1) The first part contains instructions asking LLM to generate the test output based on
the input. (2) The second part provides the problem description, and we do not include a concrete
implementation. (3) The third part includes the test input, with the LLM being asked to generate
the output based on the problem description.

Fixing. The third stage, “fixing”, described in Lines 7-15 of Algorithm 1, involves fixing the codes
that fail on the corrected test t.,. For this, we employ the same model M that initially generated
codes to fix the codes, allowing us to demonstrate the improvements brought by CONTESTED. As
shown in Stage 3 of Fig. 5, ¢y, ¢3, and c3 initially fail to pass t;. We leverage M to fix them, resulting
in the corrected versions cll, c/z, and c;. The prompt for the model to fix the code is presented in
Figure 7b. We provide the test t.o, that the initial code c fails to pass, and instruct the model to
modify the code so it can successfully pass t..,. Additionally, if there are other tests that have
already been corrected, denoted as T, we include these in the prompt as well. The model is
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Prompt for Generating the Code Prompt for Generating the Test
Twant you to act like a Python programmer. T will give you the declaration of a function Given a docstring, continue to write the following code with 10 valid assertion
and comments about its property. You need to implement the body of the function in the statements to check the correctness of the function. Provide diverse test cases.

code block. Donot modify any code I provide. .
python
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
“*"Check if in given list of numbers, :

Here is the question.
re any two numbers closer to

python
from typing import List
def has_close_element
Check if in g

at], threshold: float) -> b

assert

(a) Prompt for generating codes (b) Prompt for generating tests

Fig. 6. Prompts for generating codes and tests (the example data is from HumanEval/1)

Prompt for Correcting the Test Prompt for Fixing the Code
Given a docstring of a Python function and the input of one test case, you need to The generated code is not correct on the following test case, please fix the code to pass
generate the output of the test case based on the description of the function. it and return the complete fixed code.
The function is defined as follows:
"7 python *python
from typing import List assert has_close_elements([1.8, 1.5, 3.8],0.5) == False
def has_close_elements(numbers: List[float], threshold: float) -> bool:
' K if in given list of numbers, are any two numbers closer to

Besides the above test case, the code should also pass the following test cases, which
3.0, 0.5) are already passed previously:

python
assert has_close_elements([1.0, 2.8, 3.0, 4.8, 5.0, 2.
assert has_close_elements([1.6, 2.8, 3.0, 4

assert has_close_elements([1.6, 2.8, 3.0,

.9) == True
True

The input of the test case is: [1.0, 1.5, 3.0], 0.5
Please generate the output of the test case.

(a) Prompt for correcting tests (b) Prompt for fixing codes

Fig. 7. Prompts in the co-evolution process between codes and tests (the illustrative problem is from Hu-
manEval/1)

expected to ensure that the modified code passes all of these tests. After the fix process, we obtain
the fixed version of the code, denoted as ¢ .

We check whether the fixed code ¢’ can pass all tests in the corrected set T¢or (Line 12). We
divide the code set C into discarded codes Cyqis and retained codes Cren. If the fixed code ¢ cannot
pass Teor, it is removed from C,y, and added to Cgis. This process highlights the advantage of
introducing diversity in the generated codes. Some implementations may contain fundamental
logical errors that are difficult to fix, while others may only fail on certain edge cases, making them
fixable. Diversity thus enhances the chances of obtaining a viable code solution. If all codes end up
in Cgjs, indicating the absence of a code that fully satisfies all tests, we select and output the code
from Cgj, that passes the most tests (Line 16-17).

After fixing all codes, we execute each fixed code cgy on the unknown test set Ty, and update the
consistency relationships to re-rank the tests. This produces the second update of the consistency
relationship. After updating, if we identify a code that passes all tests, we output this code as ¢
(Line 21-23). With the improved quality of tests, consistency voting from tests to code becomes
increasingly reliable, meaning a code that passes all tests is more likely to be correct. If no such code
exists, we proceed to the next iteration. On the other hand, as the quality of the codes improves, the
consistency voting from code to tests becomes more reliable, enabling more precise identification of
incorrect tests in subsequent iterations. As shown in the “re-rank” section of Fig. 5, t3 has no passing
codes, while other tests are passed by all codes. Therefore, t5 is selected for further inspection,
initiating the next iteration.
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4 Experimental Setup
4.1 Research Questions

We begin by evaluating the performance of CoNTESTED through two automated simulated experi-
ments: one where user feedback is simulated using LLM OpenAlI o1, which has advanced reasoning
capabilities, and another where feedback is simulated via the ground truth solution. Following
these, we examine the user efforts required to use CONTESTED and conduct a user study to assess
the user experience in a real interactive setting. Lastly, we analyze the overhead of CONTESTED.

e RQ1. Overall Effectiveness How effective is CONTESTEDIn improving LLM code generation?
We conduct two simulated experiments to automatically evaluate CONTESTED, enabling ex-
tensive quantitative analysis. In the first experiment, OpenAl o1 is used to simulate providing
user feedback, while in the second experiment, the ground truth solution is used to simulate
providing user feedback.

e RQ2. User Efforts and User Study What is the user effort required by CONTESTED? We
provide and discuss the user effort required by CONTESTED in the experiments. We further
report the user study here, which assesses the user experience in a real interactive setting.

e RQ3. Time and Cost Overhead What is the overhead of CONTESTED? We analysis the time
and cost of CONTESTED.

4.2 Dataset

We adopt three standard code generation datasets that are widely-used by code generation tech-
niques [2, 11-13, 15, 19, 21, 24]. HumanEval [7] and MBPP [4] comprise a set of hand-crafted
Python programming problems. For each problem, the dataset provides the problem description in
natural language, the tests to check the correctness of given output, and the ground truth solution.
HumanEval+ [20] adds more tests to the HumanEval dataset, which makes the check more strict.
The statistics of the three datasets are as follows. The number of problems in HumanEval, Hu-
manEval+, and MBPP are 164, 164, 427 respectively. The average number of tests in three datasets
are 7.77,764.74, 3.1 respectively.

4.3 Evaluation Metrics

Following all the code generation techniques, we use the Pass@k metric. For each problem, we
may generate multiple code solutions and select the top k as the final candidates. Among these k
solutions, if at least one successfully passes all the tests for the problem, the problem is considered
solved. Pass@k represents the ratio of successfully solved problems to the total number of problems.

4.4 Compared Techniques

Firstly, we compare CONTESTED with OpenAl models, including GPT-3.5, and the most advanced
general model, GPT-40. Additionally, we compare with other LLMs for code generation, such as
Code Llama [30], WizardCode [21], and Deepseek Code [13]. Since CONTESTED functions as a
post-processing technique for outputs generated by LLM, we also evaluate it against other post-
processing methods, including the state-of-the-art MPSC[14] and CopET([5]. These two techniques
are also based on consistency. CODET uses tests as consistency indicators, selecting the code that
satisfies the most tests and has the highest number of functionally equivalent counterparts based
on test results. MPSC further incorporates specifications as additional consistency indicators;
however, the benefits brought by specification are limited. Other post-processing techniques in the
comparison include Self-Consistency [39], MBR-EXEC [31], and Self-Collaboration [10].
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4.5 Implementation

In our experiments, we choose GPT-3.5, GPT-40 and OpenAlI o1 as the base foundation model. We
leverage the same model to generate codes and tests, and also fix the codes. CONTESTED achieves
a consistent improvement on three base models. To keep consistent with the state-of-the-art
technique MPSC, the GPT-3.5 version we adopt is gpt-3.5-turbo-0613 API, which is released on
2023-06-13. GPT-3.5 is an old and less powerful model, and the context size is only 4,096. The
GPT-40 version we adopt is gpt-40-2024-08-06, which is the latest and most powerful general LLM.
The context size is 128,000. The temperature for the models is set to 0.8, allowing the model to
generate sufficiently diverse code solutions and tests. OpenAl o1 [28] is the latest LLM released by
OpenAl, noted for its strong reasoning abilities and its use of chain-of-thought processes to enhance
generation quality. CONTESTED can achieve consistent improvement on both poor and powerful
model, which indicates the effectiveness of CONTESTED. The performance of CONTESTED based on
GPT-3.5 is even better than GPT-40. In RQ1 (Section 5.1), we also investigate scenarios where user
feedback is simulated with OpenAI o1. OpenAl o1 can solve the reasoning and logic problems with
chain-of-thought, which can simulate humans. The version we use is o1-preview-2024-09-12.

5 Results and Analysis

In this section, we present the experimental results along with an in-depth analysis. First, we conduct
two simulated experiments to automatically evaluate CONTESTEDs effectiveness, as detailed in
Section 5.1. Next, we discuss the user effort involved in using CONTESTED during these experiments
and include a user study assessing user experience in a real interactive setting in Section 5.2. Finally,
we analyze the time and cost overhead associated with CONTESTED in Section 5.3.

5.1 RQ1: Overall Effectiveness

5.1.1 Experimental Design. In this paper, we propose a lightweight interaction framework to gather
user feedback, which enhances the quality of consistency indicator by asking users to validate
the correctness of selected tests. In this research question (RQ1), we investigate the effectiveness
of CoNTESTED through large-scale, automated experiments. These experiments simulate user
feedback, enabling extensive quantitative analysis. In Section 5.2 (RQ2), we conduct a user study to
evaluate CONTESTED in a real interactive setting. Given the limitations in scaling the user study to
a large scale, we leverage simulated user interactions in RQ1. Specifically, we use two simulation
methods: (1) OpenAl o1 is used to simulate providing user feedback, (2) ground truth solution is
used to simulate providing user feedback, which can be regarded as novice users and experienced
users respectively. Accordingly, the two variants of CONTESTED are referred to as CONTESTED,
and CoNTESTEDGT, respectively.

Experienced users rarely make mistakes, while novice users are more prone to errors. In real
development scenarios, tests should be error-free, as they serve to ensure code correctness. They
are typically provided by users, who are responsible for ensuring their accuracy. If tests contain
errors, the quality of the generated code is compromised. Additionally, it is often easier for users to
provide expected test outputs rather than writing code, as they already have a clear understanding
of the requirements. In simulations using OpenAl o1, we employ OpenAl o1 to correct the identified
tests. This process is fully automated, requiring no user involvement. Therefore, CONTESTED,;is an
automated variant of CONTESTED. In simulations using ground truth solution, we utilize the ground
truth solution provided by the benchmark to execute the identified tests and generate ground truth
outputs as user feedback.

For the base model, we ensure fair comparison by following the setup in SOTA[14], using GPT-3.5
for code generation and fixing, as shown in Table 1. Besides, we also build CONTESTED based on the
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Table 1. The performance of CONTESTED and other baselines on three benchmarks. The best and second-best
performances for each dataset are highlighted in bold and underlined, respectively.

Benchmark HumanEval HumanEval+

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5
GPT-40 84.67 89.69 92.50 73.82 81.03 85.80
GPT-3.5-Turbo 68.38 76.24 83.15 58.75 66.58 73.96
DeepSeekCoder 79.30 - - - - -
WizardCoder 73.20 - - - - -

Code Llama 62.20 - - - - -
Self—consistency 73.864,5.43 73.93_2'31 74.10_9.05 63.50.,,4'75 64.70_133 65.67.3429
MBR-EXEC 72.96.458 76.47 10.23 79.00.0.45 62.12,337 67.08.0.50 71.38.258
CodeT 78.054.9'67 78.05+1.31 78.30.4‘85 67.87*.9‘12 68.75+2‘17 69.65.4‘31
Self-collaboration 74.40.6.02 - - - - -

MPSC 84.29,1591  86.79:1055 87.13.308 74.39,1564  76.66.1008  77.25:329
CONTESTEDQI (GPT—&S—Based) 92.45+24_07 94.45, 1801 95.71,1256 78.03,19.98 82.65”6_07 86.35,12.39
CONTESTEDGT (GPT—3.5—Based) 93.71,2533 94.86,1862 96.32,1317 80.00.2125 84.67.1800 88.42.14.4¢
Benchmark MBPP

Metric Pass@1 Pass@2 Pass@5

GPT-40 71.19 76.49 79.89

GPT-3.5-Turbo 66.80 72.34 76.60

DeepSeekCoder 70.00 - -

WizardCoder 61.20 - -

Code Llama 61.20 - -

Self-consistency 71.7044.90 71.730.61 71.82_478

MBR-EXEC 70.79.3.99 73.14.¢.50 74.85.1.75

CodeT 71.90+5‘10 71.95,039 72-027458

Self-collaboration 68.20,1.40 - -

MPSC 73.2346.43 73.29.0.95 73.55.350

CONTESTEDOI (GPT—S.S—Based) 74.30,7.50 74.53,919 75.14_1 4¢

CONTESTEDGT (GPT—3.5—Based) 83.90,17.10 86.80,1446 87.45,1085

most advanced general LLM, GPT-4o0, and the latest reasoning LLM, OpenAlI o1, where CONTESTED
consistently shows performance improvements, as shown in Table 2. Due to the significant time and
cost associated with OpenAl o1 (detailed in Section 5.3), we sampled 25 problems from HumanEval
for code generation and fixing using OpenAl ol. OpenAl o1 is more suitable for complex logic and
math tasks, and its cost makes it impractical for routine code generation.

5.1.2  Experimental Results. In Table 1, we present the effectiveness of CONTESTED across two simu-
lated experiments. In these experiments, CONTESTED,;uses OpenAl o1 to simulate feedback, while
ConNTEsTEDGT employs ground truth solution for feedback simulation. We conduct experiments
on three datasets and compare the results with various baselines. These comparison techniques
are grouped into three categories: the top part in Table 1 leverages only the LLM, the middle part
applies post-processing techniques, and the bottom part represents our proposed approach. The
increases shown to the right of the post-processing technique results indicate their improvements
over the base model, GPT-3.5. As shown in Table 1, both variants of CONTESTED achieve SOTA
performance across all benchmarks, demonstrating the effectiveness of CONTESTED. CONTESTEDGT
outperforms CONTESTED,;, as the outputs assigned to tests in CONTESTED,; may be incorrect,
reducing the model’s performance. Built on a suboptimal model, GPT-3.5, CONTESTED achieves an
average improvement of 32.9% over GPT-3.5, an 11.1% gain over the state-of-the-art post-processing
technique, MPSC [14], and a 12.32% improvement over the most advanced LLM, GPT-4o.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA027. Publication date: July 2025.



ConTesTED: Consistency-Aided Tested Code Generation with LLM ISSTA027:15

Table 2. The performance of CONTESTED built on GPT-40 and OpenAl o1

Models HumanEval HumanEval+ MBPP

Pass@1 Pass@2 Pass@5 | Pass@1 Pass@2 Pass@5 | Pass@1 Pass@1 Pass@5
GPT-40 84.67 89.69 92.5 73.82 81.03 85.80 71.19 76.49 79.89
CONTESTED,; (GPT-40-Based) 94.96 96.10 97.64 81.95 86.4 90.9 75.36 75.94 76.20
CoNTEsTEDGT (GPT-40-Based) 97.59 99.15 99.03 85.50 88.42 91.58 85.30 86.56 88.13
OpenAl ol 90.96 92.59 93.95 93.60 95.63 96.00 - - -
CoNTESTEDGT (01-Based) 100.0 100.0 100.0 95.26 99.95 100.0 - - -

Next, we compare the performance of CONTESTEDGT and CONTESTED,;. The results of CONTESTED;
on HumanEval and HumanEval+ are similar, indicating that the outputs generated by OpenAl o1
are close to the ground truth outputs. CONTESTED,; performs worse than CONTESTEDGT on MBPP,
but it still surpasses the SOTA baseline, MPSC. This difference arises because many of the outputs
generated by OpenAl o1 on MBPP are incorrect. We compute the error rate of the outputs generated
by OpenAl o1 for tests; the error rate on HumanEval and MBPP are 8.6% and 48.3%, respectively.
Since the generated outputs guide code fixing to meet their specifications, any inaccuracies can de-
grade code quality. The HumanEval dataset includes comprehensive problem instructions, complete
function signatures, and parameter and return value types, which aids understanding. Conversely,
the MBPP dataset often lacks parameter and return types, and its problem descriptions can be
misleading. In addition, there are no input-output examples to clarify requirements. This ambiguity
brings challenges even for human understanding, as noted by participants in the user study. For
instance, in MBPP/299, the instruction is "Write a function to calculate the maximum aggregate
from the list of tuples,” which is vague. Given the test input, [(1, 40), (2, 50), (3, 60), (1, 70), (2, 80), (3,
90)], it is particularly challenging to deduce the intended output based solely on the description.

Finally, to demonstrate the generalization ability of CONTESTED, we further implement it using
more powerful LLMs, GPT-40 and OpenAlI ol. The results are shown in Table 2. In the o1-based
CoNTESTED, since the code is already generated by OpenAl o1, we evaluate only CONTESTEDGT. As
shown in Table 2, CONTESTED achieves notable gains with these advanced models as the base. For
example, CONTESTED,; based on GPT-40 increases performance on HumanEval from 84.67 to 97.59.
Specifically, built on GPT-4o0, the pass@1 improvements of CONTESTED,; across three datasets
are 12.2%, 11.0%, and 5.9%, while CONTESTEDGT achieves 15.3%, 15.82%, and 19.8% improvements,
respectively. When using OpenAl ol as the base model, CONTESTEDgT achieves improvements
of 9.94% and 1.77%. These increases are smaller than those on GPT-40 due to the higher initial
performance of OpenAl o1, which limits the room for further gains.

5.2 RQ2: Users Efforts and User Study

Since CoNTESTED is designed as an interaction framework, it is essential to minimize the need for
developer intervention. In this section, we focus mainly on the effort required from users. First, we
show the interaction rounds in the simulated experiments to reflect user effort from a quantitative
perspective. Additionally, we conduct a user study to evaluate CONTESTED in interactive scenarios
to evaluate the efforts from user experience.

5.2.1 Experimental Design of User Study. In this section, we introduce the design of the user study.
Settings. In our user study, there are three different settings. (1) Writing Code. In the first setting,
given the problem instruction in natural language, the users are asked to implement the function
completely. (2) Fixing Code. In the second setting, given the instruction, we will leverage the LLM
to generate a code. Then the instruction and the code will be given to the users, and they will be
asked to check the correctness of the code and fix it if any bugs exists. (3) Fixing Tests. The third
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Table 3. The number of interaction rounds

Benchmark HumanEval HumanEval+ MBPP Average
CONTESTED 2.83 4.80 5.95 4.53

setting is CONTESTED, and we will let the users use CONTESTED. Each iteration CONTESTED will
identify a problematic test and ask the users to check it and fix it if any problem exist.

Metrics. During the three settings, we will record the time that the users spend on each setting
and ask the users to give a difficulty score representing the difficulty degree to complete the task
in each setting (1 is easiest, and 5 is highest). Finally, we will compute Pass@1 for the solutions
obtained from each setting.

Participants. The implementation language for the three benchmarks is Python. Given the wide-
spread use of code generation in enhancing coding efficiency across both academia and industry,
we selected participants from both domains. Specifically, we selected 6 PhD students from uni-
versities and 6 industry developers working with Python from industry as participants. Of the 6
PhD students, 5 had prior industry experience in Python development through internships. The
industry developers had an average of 2.83 years of working experience.

Prior to the experiment, participants were not informed about the problems in HumanEval and
MBPP. To assess their familiarity with Python, we conducted a survey. Among the PhD students,
their average Python experience is 4.83 years. When asked to rate their proficiency, the average
score was 4 out of 5. The 6 PhDs had similar levels of Python experience. Additionally, 50% of the
PhDs code almost every day, and 100% code at least 4 days a week. For the industry developers, the
average Python experience was 6 years, with an average proficiency score of 4.5 out of 5. All of
them code almost every day, and the 6 industry developers had similar levels of experience.

To ensure that all participants were familiar with the proposed method and the various experi-

mental settings, we conducted a training session that covered the details of each setting. Only after
confirming that all participants fully understood the settings did we proceed with the user study.
Furthermore, participants were asked to rate their familiarity with the settings, and all provided a
score of 5 out of 5.
Procedure. Considering the efforts for participants, we randomly' sample 40 examples, with 20
from HumanEval and 20 from MBPP. We asked both the academia and industry groups to complete
the 40 problems individually. We will have three different users complete each of the three settings
for a given problem to prevent any user from becoming familiar with the problem after working
on one setting. The number of problems completed by each participant across different settings
was approximately balanced(e.g., 7 problems in Setting-1, 7 problems in Setting-2, and 6 problems
in Setting-3), with each participant working on 20 problems in total. Detailed task assignments for
each participant are available on our website [1].

5.2.2  Experimental Results. Firstly, we present the interaction rounds in the simulated experiments
in Table 3. The average number of rounds across all benchmarks is 4.53, indicating that users need
to be consulted only four times on average to achieve a 33% performance improvement over the
base model, which is a worthwhile efforts. HumanEval and HumanEval+ require only 2.83 and 4.80
rounds, a relatively low number. In contrast, MBPP involves more rounds, that is, 5.95. As discussed

1We selected these samples using a completely random method. Specifically, we used one of the most commonly used
pseudo-random generators in C++ code, std: :minstd_rand, with a random seed of 0 to sample from both HumanEval and
MBPP.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA027. Publication date: July 2025.



ConTesTED: Consistency-Aided Tested Code Generation with LLM ISSTA027:17

Table 4. The results of user study

Groups Settings Pass@1 Time (s) Difficulty (1-5)
Writing Code 70.0 2704 2.6

PhDs Fixing Code 87.5 178.1 24
Fixing Tests 90.0 101.9 1.5

Writing Code 70.0 210.5 2.5

Industry Developers  Fixing Code 87.5 140.6 2.2
Fixing Tests 92.5 98.6 1.9

Writing Code 70.0 240.5 2.6

Overall Fixing Code 87.5 159.4 2.3
Fixing Tests 91.3 100.2 1.7

Table 5. Time and cost analysis of ConTested and OpenAl o1.

Avg Cost ($)

Performance Avg Time (min)
Models Datasets ‘ ‘ Overall Gen Correct Fix

Pass@1 Pass@2 Pass@5 | Overall Gen Correct Fix

73.68 74.66 75.76
92.00 92.00 95.98

1.08 0.21 0.48 0.39
2.26 0.28 1.10 0.88

0.30 0.03 0.21 0.06
0.56 0.04 0.40 0.12

CONTESTEDy; MBPP
(GPT-3.5-based) HumanEval

OpenAl o1 HumanEval | 90.96 92.59 93.9 | 2544 2544 - - | 587 5.87 -

in RQ1, MBPP’s instructions are somewhat ambiguous, making it more challenging for models to
correctly refine the code, thus requiring additional tests for better understanding.

Next, we present the results of the user study, summarized in Table 4. We present the results for
three groups: PhDs, Industry Developers, and Overall, with each group’s performance averaged
across 40 problems. Among the three metrics evaluated, CONTESTED (Fixing Tests) demonstrates
the best performance for both the PhD group and the Industry Developers group. For Pass@1, time
spent, and difficulty scores, users report the highest Pass@1, spend the least time on CONTESTED, and
assign it the lowest difficulty scores, aligning with our expectations. This suggests that CONTESTED
not only achieves the best performance but also offers the most efficient user experience with
minimal effort. Additionally, CONTESTED proves effective for both academia and industry. Notably,
industry developers tend to spend less time than PhDs across all three settings, indicating their
superior coding abilities.

To confirm our observations, we further conducted the Wilcoxon signed-rank tests on time
consumption and difficulty score between CONTESTED and the other two methods (i.e., writing
code and fixing code). Regarding time consumption, the tests yielded a p-value of 3.4e-6 between
CoNTESTED and writing code (Setting-1) and a p-value of 7.3e-5 between CONTESTED and fixing
code (Setting-2). As for the difficulty score, the p-value was 2.4e-4 between CONTESTED and writing
code and 2.2e-3 between CoNTESTED and fixing code. These results indicate that CONTESTED is
statistically more time-efficient and less difficult to use, with both comparisons reaching significance
at the 99% confidence level.

5.3 RQ3: Time and Cost Overhead

5.3.1 Experimental Design. In this RQ, we analyze the overhead of CONTESTED in terms of time and
cost. The primary expense for CONTESTED arises from invoking the OpenAI API. The tool comprises
three stages: generating code, correcting tests, and fixing code. Since the human efforts are already
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studied in the user study, we mainly focus on evaluating the time and cost of CONTESTED,; in
this RQ. We present results for HumanEval and MBPP only since the problem instructions in
HumanFEval+ and HumanEval are identical. To provide intuitive comparisons, we also report the
time and cost of using OpenAlI o1 solely without CONTESTED. Given the substantial costs of OpenAl
o1, when evaluating OpenAl o1, we sample 25 problems, generating 50 code candidates per problem
using OpenAl o1. Results are summarized in Table 5.

5.3.2  Experimental Results. As shown in Table 5, CONTESTED achieves an overall runtime of 1 to 2
minutes, with a total cost of only $0.30 to $0.56. Among the three tasks, test correction demands
most time and cost, as it relies on OpenAl o1 and other two tasks use GPT-3.5. The OpenAI o1 API
is approximately 20 times more expensive than the GPT-3.5 API. However, because CONTESTED
requires only about four rounds of feedback, the overall cost of invoking OpenAl o1 remains
manageable. In comparison, using solely OpenAl o1 results in an average runtime of 25.44 minutes
and a cost of $5.87 per problem, exceeding CONTESTED’s cost by over tenfold. Moreover, CONTESTED
even outperforms OpenAl o1. Thus, CONTESTED efficiently achieves superior performance with
minimal time and budget compared to the most advanced model alone.

6 Discussion

Integrating User Feedback We introduce a lightweight interaction framework to incorporate user
feedback for test correction. Human involvement is essential for two main reasons. First, in many
cases, only the developer can verify the correctness of specific test results. Since both tests and code
are generated by LLMs, they may each contain inaccuracies, making it challenging to determine
correct test outputs from these sources alone. In real-world development, developers must write
tests to ensure the correctness of the codes. Second, maintaining the developer’s involvement
fosters a sense of code ownership and ensures they maintain a clear understanding of the code
generation process. In software development, the process itself often carries more significance than
the final result. This engagement allows developers to gain a deeper understanding of code details,
enhancing their ability to address future bugs swiftly. However, it is important to limit developer
involvement. We ask users only to validate test results, not the code itself. CONTESTED can achieve
a 33% improvement in performance with only four rounds of interaction. Additionally, we propose
an automated variant, CONTESTED,, which also outperforms the standard SOTA approach.
Usability of CONTESTED in Complex Scenarios CONTESTED can correct the tests and ensure their
accuracy. The tests serve as a strong signal, providing feedback on the specific situations where the
code fails and helping to locate and fix bugs. This is why COoNTESTED can work well. Therefore,
when using CONTESTED, the performance will not become worse at the very least, regardless of
the difficulty of the problem. The proposed method addresses a fundamental challenge related
to inaccuracies in test cases; however, other challenges remain. One such challenge is that the
effectiveness of code generation is influenced by the capability of the base model (LLM) and the
complexity of the given problem. If the problem is highly complex, and the base model generates
totally poor responses, it indicates that the model fails to comprehend the problem entirely. In such
cases, providing corrected test cases may not have great improvement, but the performance will not
become worse, at the very least. As demonstrated in Table 1 and Table 2 of the paper, CONTESTED
consistently enhances performance towards LLMs with different abilities (GPT-3.5, GPT-40, and
OpenAl o1), regardless of whether it is applied to a weak or strong model. On the other hand, as
long as the base model demonstrates some capacity to solve the problem, CONTESTED can enhance
its performance based on the corrected tests.

Threats to Validity Threats to Internal Validity mainly lie in the randomness introduced by LLMs.
To address this issue, we use identical code and tests generated by LLMs for different techniques
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to maintain consistency. Additionally, for fair comparison, we employ the same ChatGPT API as
the state-of-the-art technique MPSC [14]. To ensure accuracy, the first two authors meticulously
review the code to prevent bugs. Threats to external validity mainly lie in the benchmark used. To
prevent data leakage issues with LLMs, we use hand-written datasets that are not part of the LLM
training data. These datasets are consistently used across all code generation techniques. Another
external validity threat arises from the user study. Each problem requires developers to perform
three different tasks, and to minimize bias, we assign different developers to each task within a
problem. This introduces the potential threat that the three developers may have varying levels of
expertise. To mitigate this, we select users with comparable development experience.
Limitations The first limitation of CONTESTED is that its performance depends on the quality of
the corrected tests. If tests are incorrectly corrected, the model may be misled—a limitation shared
by all human-involving techniques. However, correcting tests is generally less error-prone than
directly correcting code. Additionally, in real-world development, users must ensure the correctness
of tests; otherwise, the quality of the code may be compromised. While formal verification could
be used to ensure test correctness, it is often too time-consuming for practical use.

7 Related Work

In this section, we present the related work relevant to CONTESTED. We cover three types of related
work: LLM for code generation, Consistency, and other post-hoc techniques.

LLM for Code Generation Code generation techniques automatically produce code snippets based
on natural language descriptions, which has high practical value and has been studied for decades.
Early methods relied on templates to generate code [17, 42, 43]. With the appearance of neural
networks, many learning-based techniques [29, 35, 41] emerged, using natural language require-
ments as input and generating code as output. Recently, LLMs have shown strong performance
in various tasks, including code generation. General-purpose LLMs, such as ChatGPT[27] and
Claude[3], are trained on diverse types of textual corpora, achieving high performance across NLP
tasks, including code generation. In addition, code-specific LLMs, trained on extensive public code
datasets, such as DeepSeek-Coder [13], WizardCoder [21], and StarCoder [19], have been developed.
All these techniques utilize a similar network architecture based on the Transformer model [37],
with only minor modifications, such as adjustments in layer count and positional embeddings.
These techniques commonly adopt a two-stage training process: (1) next token prediction with
“fill-in-the-middle” (FIM) and (2) instruction tuning. FIM enables models to predict masked snippets
using surrounding code, enhancing their understanding of code context and generation ability.
Instruction tuning further improves the model’s capability to follow human instructions, essential
for generating code based on natural language commands.

Consistency Despite achieving promising performance, LLM outputs remain unreliable, particularly
for complex tasks where we cannot guarantee output accuracy. This requires users to verify
LLM outputs, producing additional human efforts. To improve output reliability, researchers have
proposed leveraging Consistency to post-process results. By sampling multiple outputs from LLMs
and using majority voting, the approach selects the most consistent response as the final answer.
This Consistency method is theoretically based on the notion that the tasks may allow multiple valid
paths to the correct answer [33]. Rooted in the principle of diversity, Consistency assumes that when
diverse reasoning methods converge on a single answer, it is more likely accurate. For instance,
Wang et al. [39] samples multiple “chain-of-thought” paths, choosing the most frequent answer,
while Sun et al. [34] generates varying outputs by first reciting different relevant knowledge. These
methods judge consistency directly from output agreement. However, code generation is an open-
ended problem, so Consistency techniques in code generation domain rely on different consistency
indicators to assess consistency. CoDET[5] generates both codes and multiple tests, selecting the
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code that passes the most tests (inter-consistency) and shares the most functionally equivalent
counterparts (intra-consistency). Both types of consistency depend heavily on test quality, yet
these tests, generated by LLMs, may contain errors. MPSC[14] considers specification alongside
tests, though this approach also faces limitations. As shown in their paper [14], specification
achieves only around 50% accuracy, and has small impact on results after removing specification.
To address these issues, CONTESTED enhances the quality of tests and codes iteratively through a
co-evolution process. Other consistency types involve cross-model consistency, where different
LLMs debate when their answers are inconsistent [40]. ALGO [44] introduces an additional brute-
force implementation, using its output as an oracle to verify the correctness of other generated
outputs. However, the accuracy of this brute-force algorithm itself is not guaranteed.

Other Post-Process Techniques Besides Consistency, there are also other post-process techniques
improving the quality of LLMs’ outputs. Self-refine [22] prompts the LLM to assess its output,
provide feedback, and refine based on that feedback. However, these methods lack explicit guidance
for modification, requiring the LLM to self-reflect, which can be challenging. In contrast, we provide
LLMs with failed test cases as direct feedback. Reflexion [32] uses environmental feedback, such
as error messages during test execution, to refine outputs, though the authors acknowledge that
performance relies on test quality. Other techniques [23, 45] introduce a separate verifier or reviewer
to score and re-rank outputs, yet these approaches also lack a specific direction for evaluation. In
our work, tests offer the most precise guidance for evaluation and refinement.

8 Conclusion

LLMs have shown promising performance in code generation; however, they struggle to produce
flawless code in a single attempt. Researchers leverage Consistency to enhance code quality. Never-
theless, current methods overlook a crucial aspect of using Consistency: the consistency indicators
should be of good quality. Without this, the achieved consistency remains unreliable. In this work,
we introduce Consistency-Aided Tested Code Generation (CONTESTED), an approach designed to
enhance code generator performance through two key components: (1) lightweight user effort for
validating the correctness of selected tests, and (2) a dynamic strategy for ranking, localizing, and
correcting multiple tests and codes. Our framework enables a lightweight, interactive process that
incorporates user feedback to address identified tests and guide the iterative improvement process.
Notably, the iteration rounds average only four with the support of consistency, requiring minimal
human effort to achieve a performance improvement of approximately 30%. Each iteration follows
a co-evolution process involving codes and tests. This process iteratively refines code and test
quality, making consistency voting from codes to tests and vice versa increasingly reliable. More
reliable Con;_,. allows us to select better code, while more reliable Con._,; enhances the accuracy
in identifying incorrect tests. The co-evolution process terminates when we identify a code that
passes all tests. Given the high quality of the tests, this selected code is more reliable. We evaluate
CoNTEsTED through extensive experiments, demonstrating its effectiveness across multiple LLMs,
including GPT-3.5 and GPT-4o.

9 Data Availability

Our package is available at [1], which contains the data and scripts for reproduction.
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