
Cost-Effective Testing of a Deep Learning Model
through Input Reduction

Jianyi Zhou∗†, Feng Li∗†, Jinhao Dong∗†, Hongyu Zhang‡, Dan Hao∗†§
∗Key Laboratory of High-Confidence Technologies (Peking University), MoE

†Institute of Software, Department of Computer Science, EECS, Peking University

{zhoujianyi,lifeng2014}@pku.edu.cn, jhdong@stu.pku.edu.cn, haodan@pku.edu.cn
‡School of Electrical Engineering and Computing

The University of Newcastle, Callaghan, NSW 2308, Australia

hongyu.zhang@newcastle.edu.au

Abstract—With the increasing adoption of Deep Learning (DL)
models in various applications, testing DL models is vitally
important. However, testing DL models is costly and expensive,
e.g., manual labelling is widely-recognized to be costly. To reduce
testing cost, we propose to select only a subset of testing data,
which is small but representative enough for a quick estimation
of the performance of DL models. Our approach, DeepReduce,
adopts a two-phase strategy. At first, our approach selects testing
data for the purpose of satisfying testing adequacy. Then, it selects
more testing data to approximate the distribution between the
whole testing data and the selected data by leveraging relative
entropy minimization. We evaluate DeepReduce on four widely-
used datasets (with 15 models in total). We find that DeepReduce
reduces the whole testing data to 7.5% on average and can
reliably estimate the performance of DL models.

Index Terms—Software Testing, Deep Learning, Input Data
Reduction

I. INTRODUCTION

Nowadays, deep learning (DL) models have been widely

deployed in various applications. However, like traditional

software, DL-based applications contain faults too [1], [2]. In

recent years, software testing has been applied to ensure the

reliability of DL models [3]–[5].

However, DL model testing is very costly due to the

extremely large number of testing data. For example, Deep-

Face [6], the face recognition system of Facebook, used about

0.22 million face images for testing. DeepTest [7] generated

254,221 images (whose neuron coverage, the ratio of acti-

vated neurons, is 88%) for testing a Chauffeur-CNN based

autonomous driving model. The popular ImageNet dataset [8]

contains 100,000 testing images (100 per class) for testing

various image classification models. Such a large number of

testing data with oracle information may guarantee that the

DL model is sufficiently tested, but will also consume much

testing time. In particular, manually labeling those data is very

time-consuming. Moreover, the testing data may be repeatedly

executed for evaluating alternative designs of DL models and

optimizing the models, which can be regarded as a typical

regression scenario and leads to an increased cost in testing.

To reduce the testing cost, it is desirable to have an early

estimation of the performance of a DL model by using

§Corresponding author.

less testing data. A small amount of testing data mean less

manual labeling cost. Besides, in regression testing, executing

a reduced amount of testing data also results in less cost

than executing the entire testing data. If this small subset

reveals that the model performance is acceptable, developers

can then perform a full-scale testing. Otherwise, developers

can continue to seek alternative designs of the model (e.g.,

adding/deleting a layer) or further tune the hyper-parameters

using the same subset. That is, with the small amount of testing

data, developers can quickly obtain an accurate DL model

without having to perform costly full-scale testing many times.

To achieve an early estimation of the performance of a DL

model, this paper defines an input reduction problem, which

is to select a small yet effective subset of testing data for

cost-effective testing of DL models. The set of selected data

is expected to achieve similar testing performance (which is

characterized by testing completeness and testing effective-

ness) as the entire testing data set, and to be small enough to

reduce the testing cost. To our knowledge, this is the first piece

of work on testing data reduction with the purpose of early

performance estimation. Recently, Li et al. [9] proposed an

input selection approach CES to reduce the number of testing

data required to be labelled so as to reduce the manual efforts

in DL testing, which is very related to our work. Both this

work and CES share the same general goal, alleviating the

cost problem of DL testing, but CES does not require the

selected testing data to be complete. More technical difference

and performance comparison between this work and CES are

given later in Sections III-C and IV.

In particular, we formulate the input reduction problem

in this work as a multi-objective optimization problem for

reliable performance estimation: 1) minimize the amount of

testing data selected from the whole testing data (efficiency);

2) maximize the testing adequacy achieved by the selected

testing data (completeness); and 3) maximize the similarity of

output distributions achieved by the selected and the whole

testing data (effectiveness). Testing efficiency, demonstrated

by the testing cost in this work, is measured by the amount

of testing data required in the testing process. Note that

testing effectiveness is usually measured by testing accuracy,

which is the ratio of correctly predicted testing data. However,

289

2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSRE5003.2020.00035

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

testing accuracy is not always available due to the difficulty

in testing data labelling. Therefore, in this work, we use the

similarity of output distribution (which can be viewed as

a small probability metric/distance [10]) to measure testing

effectiveness, because similar output distribution usually leads

to close testing accuracy.

The challenge in this problem lies in how to balance these

relevant (even contradictory) objectives, which has never been

studied by existing work on DL testing. In particular, we

present a two-phase reduction approach DeepReduce, which

satisfies both the testing adequacy and the similarity of output

distributions. To measure the testing adequacy, we use neuron

coverage criteria in this work, which is a widely used criteria

for measuring testing adequacy in DL testing. To represent

output distribution, we use the outputs of the neurons in the

last layer of a DL model, which is more related to the behavior

of a DL model [11], [12]. Guided by these two metrics,

DeepReduce first selects a minimized subset of testing data

with sufficient testing adequacy through a greedy strategy, and

adds more testing data to the subset based on relative-entropy

minimization through a heuristic-based method.

To evaluate our approach DeepReduce, we conducted ex-

tensive experiments on 15 DL models of four datasets. The

experiment results show that the absolute difference between

the accuracy achieved by the testing data selected by DeepRe-

duce and the original is 0.0062 on average, indicating that

DeepReduce performs well in estimating the performance

of DL models. Besides, DeepReduce reduces the amount

of testing data required for a reliable testing to 7.5% on

average, which means that over 92.5% testing cost can be

saved by DeepReduce. Compared with CES [9], which is

the state-of-the-art technique for reducing manual efforts in

DL testing, when selecting the same number of testing data,

CES achieves 0.0215 in terms of accuracy difference on

average. That is, DeepReduce outperforms CES in terms of

performance estimation. DeepReduce is also more stable and

reliable, and can reduce more testing data according to our

evaluation results. Besides, we also conducted a preliminary

study on the performance of DeepReduce in regression testing,

i.e., the estimation performance of selected testing data on

modified models, and found that DeepReduce achieves an

average of 0.0104 in terms of accuracy difference, indicating

that DeepReduce can be also used to mitigate regression

testing cost to some degree.

In summary, the contributions of this paper are as follows:

• A novel approach to cost-effective testing a DL model

by considering three objectives: efficiency, completeness,

and effectiveness.

• An empirical evaluation to investigate the performance of

our approach on real-world DL models. The results have

confirmed that the proposed approach can significantly

reduce DL testing cost by reducing the amount of testing

data required for testing a DL model.

II. PROPOSED APPROACH

In order to estimate the performance of a DL model in a

cost-effective way, this work attempts to select a representative

subset of testing data from a given set of testing data.

A. Problem Description

Considering the usage, the selected data are expected to

satisfy at least two objectives. The first one is that the selected

data are expected to have the same testing adequacy (e.g.,

neuron coverage) as the given set, so as to guarantee that the

performance estimation is conducted on the complete learning

model, instead of a partial learning model. The second one

is that the selected data are expected to generate the same

output distribution as the given set, so as to guarantee that the

estimation is correct and precise. That is, this paper targets an

input reduction problem, which is formally defined as:

Definition 1. Given a set of testing data T and its target DL
model M , we define function testReq(T,M) to measure to
what extent the testing data T satisfy the testing requirement
of M and function outDist(T,M) to measure the output
distribution of M with respect to T . The problem of input
reduction in DL testing is to find the smallest subset of testing
data from T , denoted as T ′, satisfying that testReq(T,M) =
testReq(T ′,M) and outDist(T,M) = outDist(T ′,M).

As the input reduction problem is NP-complete, we relax

its requirements on the output distribution outDist(T ′,M) to

make it easier to find possible solutions. That is, we replace

outDist(T,M) = outDist(T ′,M) by outDist(T,M) �
outDist(T ′,M), i.e., the output distribution outDist(T,M)
is similar to outDist(T ′,M). Such a requirement on output

distribution guarantees that the estimation using T ′ is close to

or even the same as T on M . Note that through this relaxing

process, the input reduction problem is still NP-complete.

However, with this relaxing process, more solutions instead

of one (i.e., a subset of testing data whose output distribution

is close to the original set) exist so that the redefined input

reduction problem seems to be easier, especially considering

the measurement used in the paper.

To solve the redefined input reduction problem, i.e., finding

a smaller set instead of the smallest set, we present a new

technique DeepReduce to select a small set of testing data

for cost-effective testing. That is, given a testing data set T
and its learning model M , DeepReduce iteratively selects a

candidate testing data until the two objectives are satisfied. In

particular, we first present the metrics used in DeepReduce to

define functions testReq and outDist (in Section II-B), and

then a two-phase reduction algorithm used in DeepReduce to

select testing data (in Section II-C).

B. Testing Adequacy and Output Distribution

Testing Adequacy. Structural coverage is widely used for

measuring testing adequacy in conventional software testing,

which measures to what extent structural elements (e.g., state-

ments and methods) are covered by a test or test suite. It is

usually taken as the default requirement for software testing. In

the literature, there are various neuron coverage criteria (e.g.,

290

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

Neuron Coverage (abbreviated as NC) [13], k-Multisection

Neuron Coverage and Neuron Boundary Coverage [14]) pro-

posed in DL testing, each of which can be used to define the

function testReq. Here, we use NC as the example to illustrate

our input reduction approach, because it is lightweight and

widely used/studied in the literature [3], [5], [13]. NC [13] is

defined as the ratio of activated neurons of a DL model, where

an activated neuron refers to the neuron whose output of an

input data is larger than a given threshold β. NC with various

threshold β is taken as different coverage criteria.

Output Distribution. We measure the data distribution by

leveraging the outputs of the neurons in the last layer since

they are more related to the behavior of a DL model and the

problem domain [11], [12]. For each neuron we record its

outputs of all testing data, and divide its output range into

several sections, each of which contains the same number of

unique outputs. We then measure the data distribution across

these sections. In particular, suppose that the target DL model

M consists of m neurons in its last layer, we first record the

outputs of the testing data set T on each neuron ni (i ∈ [1,m]).
For each neuron, we sort the unique values of its outputs,

and group these unique values (following the order) into K
sections (denoted as Dni,1, Dni,2, ..., and Dni,K) of equal

size. In particular, Dni,k(k ∈ [1,K − 1]) contains the unique

values with the index of � |T |∗(k−1)
K � + 1 to � |T |∗kK �, while

Dni,K contains the remaining values. The output of each data

t (t ∈ T) on ni falls into one of these sections. For each

ni, we calculate the ratio of testing data whose corresponding

output falls into Dni,1, Dni,2, ..., and Dni,K , and denote the

corresponding results by Pni

T = {Pni

T (1), ..., Pni

T (K)}, where

Pni

T (j) is the percentage of data in T whose corresponding

output falls into Dni,j . Finally, the output distribution of M
with respect to T is represented as PT : {Pn1

T , Pn2

T , ..., Pnm

T }.
For example, suppose the outputs of T on one neuron ni in

the last layer of M are {1,2,3,9,4,7,8,1,10} and K is 2, we first

divide the sorted unique values into two equal-size sections,

i.e., {1,2,3,4} and {7,8,9,10}, and then calculate the percent-

age of data falling into each section, which is 55.6% (5/9) and

44.4% (4/9) respectively. Therefore, Pni

T = {55.6%, 44.4%}.
C. Two-Phase Reduction Algorithm

With the testReq and outDist introduced in Section II-B,

DeepReduce aims to select testing data by satisfying the two

mentioned requirements. Algorithm 1 presents the two-phase

reduction algorithm, where the input consists of testing set

denoted as T , a DL model denoted as M, coverage denoted

as Cov, output distribution of T denoted as TD, output section

of each data in T denoted as TI, the number of neurons denoted

as m, the number of sections in each neuron denoted as K, and

termination criterion denoted as α, respectively. The algorithm

first selects a subset of T to guarantee the neuron coverage by

using the HGS algorithm [15], and then selects more testing

data with the purpose of maximizing the similarity of output

distribution between T and T ′.
In the first phase, this algorithm reuses the HGS [15]

algorithm to select the minimized subset of T with the same

Algorithm 1: Two-Phase Reduction Algorithm

Input : T , M, Cov, TD, TI, m, K, α
Output: Reduced testing data T ′

1 // First Phase;
2 T ′ ← HGS(T , Cov);
3 TD′ ← Update(TD′, T ′);
4 REMAIN← T \ T ′;
5 // Second Phase;
6 KLlist← ∅ ;
7 while True do
8 re← ∅;
9 foreach i ∈ {1,m} do

10 kmax← 1;
11 maxvalue← TDi,1/TD′

i,1;
12 foreach k ∈ {2,K} do
13 if maxvalue < TDi,k/TD′

i,k then
14 kmax← k;
15 maxvalue← TDi,k/TD′

i,k;
16 end
17 re← re ∪ {kmax};
18 end
19 maxsim← 0, dict← ∅;
20 foreach t ∈ REMAIN do
21 sim← getSimilarity(TI[t], re);
22 if sim > maxsim then
23 maxsim← sim;
24 dict← {t};
25 else if sim == maxsim then
26 dict← dict ∪ {t};
27 end
28 minvalue←∞;
29 foreach t ∈ dict do
30 if minvalue > KL(T, T ′ ∪ {t}) then
31 minvalue← KL(T, T ′ ∪ {t});
32 t′ ← t;
33 end
34 T ′ ← T ′ ∪ {t′};
35 REMAIN← REMAIN \ {t′};
36 TD′ ← Update(TD′, T ′);
37 KLlist← KLlist ∪ {KL(TD, TD′)};
38 if KL(TD, TD′) < α then
39 break;
40 end
41 return T ′;

NC coverage. In particular, the HGS algorithm is a greedy

algorithm which tends to select testing data covering the

activated neurons that are less covered by the existing testing

data. In Line 2, HGS(T,Cov) is used to represent the output

of the HGS algorithm on T by satisfying the NC coverage

recorded by Cov, which is a subset of selected testing data.

In Line 3, a function Update(TD′, T ′) is used to calculate the

output distribution of the selected data set T ′ (denoted as TD′)
by using the section division generated by TD, to facilitate the

output comparison between T and T ′. In Line 4, the remaining

unselected testing data are put into REMAIN, which are to be

selected in the second phase.

In the second phase, this algorithm selects more testing data

(in Lines 6-40) until the set of selected data is similar to

T in output distribution by using a heuristic-based method.

That is, more testing data are selected until the termination

291

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

criterion (i.e., the relative entropy value between T and T ′ is

smaller than the specified threshold α) is satisfied, as shown

by Lines 38-39. In particular, Lines 8-18 are to find the section

in which the output distribution differs the most between T ′

and T on each neuron, and these sections are recorded based

on the order of the corresponding neuron by re. For each

neuron ei, the algorithm calculates the output difference on

each section Dei,k between T and T ′ through TDi,k/TD
′
i,k,

so as to find the section with the largest output difference

on each neuron (denoted as kmax in the algorithm). Then

Lines 19-33 are to select the testing data t′ that may minimize

the output difference between T and the selected testing

data set, where variable re is used to represent the output

distribution difference between T and T ′, and the function

getSimilarity is used to calculate the similarity between the

output distributions. The variable REMAIN is a set recording

unselected testing data. As shown by Lines 19-27, for each t
in REMAIN, this algorithm iteratively calculates the number

of neurons in TI[t] and re with the same section, and finds

the testing data with the largest number of such neurons. Note

that dict is an array recording candidate testing data, each

of which has the largest similarity with re. Among all the

candidates in dict, in Lines 28-33, this algorithm determines

which testing data should be chosen by iteratively calculating

the relative entropy between the given testing data set T and

the selected testing data set by including each candidate. Lines

9-33 are to find the testing data contributing the most to the

similarity of output distribution. Based on the selected testing

data t, Lines 34-36 are to add the selected testing data into T ′,
remove it from REMAIN, and update the data distribution TD′.
Finally, Lines 37-39 are to calculate the relative entropy value

between T and T ′, and check whether this value is smaller

than the specified α, which is the termination criterion of this

algorithm. More details about the calculation of the relative

entropy value is given below.

For a learning model M with the given testing data set

T , we use PT to represent its output distribution, which is

calculated by the ratio of testing data falling into sections

Dei,j(i ∈ [1,m], j ∈ [1,K]). For the selected testing data

set T ′, we calculate its output distribution on the sections

Dei,j(i ∈ [1,m], j ∈ [1,K]) produced by T instead of T ′

for ease of comparison, which is denoted by PT ′ . We use

relative entropy [16], which is also called Kullback-Leibler

Divergence, to measure the similarity between them (denoted

as KL(PT , PT ′)). The calculation is defined in Formula 1.

Relative entropy is often used to measure how one output

distribution is different from the other one. Note that the output

distribution of T or T ′ contains m probability distributions,

we take their average as the similarity between two output

distributions. The smaller the KL value is, the more similar

these two output distributions are.

KL(PT , PT ′) =

∑m
i=1

∑K
j=1 P

ei
T (j) ∗ log P

ei
T (j)

P
ei
T ′ (j)

m
(1)

The algorithm complexity is O(m∗K ∗ |T |)+O(m∗ |T |2),
where K denotes the number of sections in each neuron, m

TABLE I: The information for datasets.

Dataset Model
Model Info

#Layers #Neurons #Tests Acc

CIFAR-10

NIN 24 3,432

10,000

0.8815
VGG19 65 50,782 0.9346
ResNet 113 4,138 0.9220

WideResNet 94 33,178 0.9537
DenseNet 350 37,168 0.9463

MNIST
Lenet1 7 52

10,000
0.9754

Lenet4 8 148 0.9848
Lenet5 9 268 0.9858

CIFAR-100

NIN 25 3,592

10,000

0.5698
VGG19 57 18,696 0.6159

ResNet50 175 93,192 0.5541
GoogleNet 127 27,464 0.6939

IMAGENET
ResNet50 178 95,059

50,000
0.7470

VGG16 24 15,888 0.7127
VGG19 27 17,168 0.7126

denotes the number of neurons in the last layer and |T | denotes

the number of testing data. Note this complexity is achieved

only when T = T ′, indicating no input reduction occurs.

Besides, K is usually set to 20 in the literature [9] and m
is usually not large in practice. Therefore, the complexity of

DeepReduce is acceptable.

III. EXPERIMENT SETUP

A. Datasets and DL Models

In this work, we used four widely-used image recognition

datasets, MNIST [17], CIFAR-10, CIFAR-100 [18], and IM-

AGENET [19]. MNIST contains 60,000 training images and

10,000 testing images in total. We trained three LeNet family

models (LeNet1, LeNet4, and LeNet5) [17] and evaluated

DeepReduce on them. CIFAR-10 contains 50,000 training im-

ages and 10,000 testing images. On this dataset we trained five

DL models, including NIN [20], VGG19 [21], ResNet [22],

WideResNet [23], and DenseNet [24]. CIFAR-100 is just

like the CIFAR-10, except it has 100 classes each of which

contains 600 images (500 training images and 100 testing

images). We trained four DL models, including NIN, VGG19,

ResNet50, and GoogleNet [25]. IMAGENET collects more

than 1.4 million images as training data, 50,000 images as

validation data, and 50,000 images as testing data. It divides

all images into 1,000 classes. We trained three DL models,

i.e., ResNet, VGG16 and VGG19 on this dataset. To sum up,

we collect 15 DL models on four data-sets in total. Table I

presents the information of these models, where Columns 3-

6 presents the basic statistics, and along with their testing

accuracy obtained by the whole testing data. In particular,

each of the first three datasets contains 10,000 testing data

respectively, while IMAGENET contains 50,000 testing data.

B. Implementations

The implementations of all the studied DL models are

collected from GitHub. More specifically, we used the default

parameters in the script in training process. As recording

the neuron coverage of all the testing data on IMAGENET

takes up too much memory, we conducted the HGS (the

first phase) in batch when implementing DeepReduce. Al-

though such operation does not yield optimal results in test

reduction, the testing adequacy can still be satisfied. All the

scripts used in this experiment are written in Python. The

292

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

empirical study was conducted on a workstation with 32-

core Intel Xeon CPU E5-2683-v4(2.10GHz), 128G memory,

and also two NVIDIA GPU (TITAN RTX (24G) and TITAN

XP (12G)). For reproducibility and future usage, we put

all the materials of this experiment on our project website:

https://github.com/DeepReduce/DeepReduce.

C. Baseline Approaches

The most related work on input reduction is CES [9]1, which

is used to select representative testing data from unlabelled

data. However, it requires the number of testing data to be

selected as the input of the algorithm, and it relies on the

data distribution of the last hidden layer instead of the last

layer. To enable comparison, we took the number of testing

data selected by DeepReduce as an input of CES. Besides, we

also implemented a variant of CES (denoted as CESkl), by

changing the termination criterion to be the KL value to align

with our approach. That is, CESkl iteratively selects testing

data until the KL value is smaller than α. As the redundancy of

testing data in different datasets is different, we do not know

how many testing instances are representative enough for a

given DL model along with its dataset beforehand. Therefore,

the KL value is more suitable than the number of testing data

to be selected as the termination criterion.

Besides, we also implemented two random reduction ap-

proaches, i.e., RANDOM and RANDOMkl. RANDOM ran-

domly selects testing data from the whole testing data until the

number of the selected data is larger than a given value (i.e.,

the number of testing data selected by DeepReduce), while

RANDOMkl randomly selects testing data from the whole

testing data until the KL value is smaller than α.

In summary, we implemented four baseline approaches. To

reduce the influence of their inherent randomness, CES and

CESkl are repeated 10 times, and the two random approaches

are repeated 50 times. Their average results are used for

comparison.

D. Neuron Coverage Criteria

In this experiment, we investigated the performance of

DeepReduce by using various neuron coverage criteria pro-

posed in the literature. In particular, the neuron coverage

criteria studied in this experiment include the following.

Neuron Coverage (NC) [13]: Given a testing data, a neuron

is activated if its output is greater than a given threshold,

otherwise the neuron is non-activated. NC is defined by the

ratio of activated neurons of a DNN, where the activation

threshold is set to be 0.25, 0.5, or 0.75 in this paper. NC

with various threshold is taken as different coverage criteria.

Neuron Boundary Coverage (NBC) [14]: For each neuron of

a DNN, the outputs of all the training data on this neuron are

located in an interval denoted as [low, high]. Given a testing

data, if its output is not in this interval (i.e., (−∞, low] and

[high, +∞)), it is regarded to cover the corner-case region

of this neuron. NBC measures to what extent the corner-case

region is covered.

1Li et al. [9] proposed two approaches CSS and CES. We took CES as the
baseline because it is more effective according to their evaluation results.

Strong Neuron Activation Boundary Coverage
(SNAC) [14]: SNAC is similar to NBC, but it considers only

the upper corner-case region (i.e., [high, +∞)) covered by

testing data.
Top-k Neuron Coverage (TKNC) [14]: TKNC is defined as

the ratio between the total number of top-k neurons in each

layer and the total number of neurons in a DNN, where top-k

neurons refers to the neurons used to be the most active k

neurons in each layer. Given a testing data, it is regarded to

cover the top-k neuron if and only if its output of the neuron

is no less than the kth highest value of all the neurons in the

corresponding layer.

E. Research Questions and Experimental Design
We investigate the performance of the proposed approach

from the following aspects.
RQ1. Performance: How does DeepReduce perform in

input reduction?
To answer this RQ, we compared the performance of the

proposed approach with the four baseline approaches, and

measured (1) the reduction performance through the amount

of the selected testing data, (2) the reduction ratio, and

(3) the performance of selected testing data through the

absolute difference between the testing accuracy achieved by

the selected testing data and the original one. In particular, the

testing accuracy is the ratio of correctly predicted testing data.

More specifically, in this RQ, we used the NC with threshold

β = 0.5 (abbreviated as NC(0.5)) and the termination criterion

with threshold α = 0.001 as the default setting.
RQ2. Parameter Influence: How do different parameters

(i.e., coverage criteria and termination criteria) influence the

performance of DeepReduce?
In this RQ, we studied 8 neuron coverage criteria in total,

which are NC (setting β to 0.25, 0.5, and 0.75), NBC, SNAC,

and TKNC (setting k to 1, 2, and 3). More specifically,

we studied the influence caused by various neuron coverage

criteria on three datasets excluding IMAGENET, as it is quite

time-consuming to collect some coverage criteria due to the

large training set. Besides, we studied the influences caused

by various termination criteria, e.g., the threshold α on the KL

value is set to be 0.05, 0.01, 0.005, and 0.001.
RQ3. Sensitivity Analysis: How do the components of

DeepReduce affect its performance?
For sensitivity analysis, we investigated the impacts of

components in the two-phase algorithm of DeepReduce . In

particular, besides the two selection heuristics used in the

two phases, which layer is used to get the output of the DL

model and how to divide the output into sections (i.e., division

strategy) may also influence the results of DeepReduce as they

are components of the second phase. Therefore, we imple-

mented the following variants of DeepReduce by considering

the influence of these components.
1) We excluded the first phase from DeepReduce (abbreviated

as Variant1);
2) We used the output of the neurons in the last-hidden layer

and the last layer to investigate the influence of different layers

on DeepReduce (abbreviated as Variant2);

293

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

3) We replaced the division strategy for output distribution

with equally partitioning the output range (abbreviated as

Variant3).

4) We replaced the selection heuristic in the second phase with

random selection (abbreviated as Variant4).

More specifically, we used a fixed number of selected testing

data as the termination criterion of each variant. That is, each

variant iteratively selects testing data until the selected data

is larger than a given value (i.e., the number of testing data

selected by DeepReduce when setting α to 0.001 and the

coverage criteria to NC(0.5)). Due to space limit, we show

only sensitivity results on CIFAR-10. More sensitivity results

on other datasets are presented on our website.

RQ4. Application in Regression Testing: How does

DeepReduce perform in regression testing?

To mitigate the testing cost, our work can be used to get

an early estimation of the performance of modified models,

which is also a use case of our work. In this RQ, we presented

a preliminary study of DeepReduce in the regression testing

scenario. To simulate regression testing, we first collected

a set of modified models, which are obtained through mod-

ification on the models and retraining process. In particular,

we applied seven types of modification on the studied models,

i.e., adding layer (ADL), deleting layer (DEL), adding neurons

(ADN), deleting neurons (DEN), changing learning rate (LR),

changing momentum (MO), and changing dropout ratio (DR).

Although these changes may not be representative in practice,

they are some typical changes used by the developers in

practice, and have important influences on the performance of

DNN models. Based on the modified models, we evaluated

our approach by comparing the accuracy of the selected data

against the whole testing data, hoping that the selected data

set are still able to estimate the performance of modified

models. More specifically, we reused the testing data selected

by DeepReduce in RQ1, and calculated the accuracy and

ΔAcc on all the modified models.

F. Threats to Validity

The internal threats to validity lie in the implementations of

DeepReduce, the baseline approaches, and evaluation scripts.

To reduce these threats, the first two authors reviewed the

implementation code and scripts used in this work.

The external threats to validity mainly lie in the DL models,

the datasets, and the used neuron coverage criteria. To reduce

the first two threats, we used 4 datasets and various DL

models, which are widely used in image recognition. The last

threat comes from the coverage criteria used in this paper,

since our approach is not specific to the eight neuron coverage

criteria used in this work. To address these threats, in the

future, we will use more datasets (e.g., autonomous driving

dataset) and more criteria to evaluate the performance of

DeepReduce.

The construction threat to validity mainly lies in the model

modifications applied in regression testing. To reduce this

threat, we designed seven changes in total, including structural

and non-structural changes. All of these are typical changes

used in model designing and hyper-parameters tuning. How-

ever, these changes are not representative of all the alternative

designs of a model, e.g., complex and multiple changes are

missing. In the future, we will evaluate DeepReduce by using

more modifications in regression testing.

IV. RESULTS ANALYSIS

A. Results for RQ1

In this section, we analyze the performance of DeepReduce

with α = 0.001 against the baseline when the coverage

criterion is NC(0.5).

1) Comparison using the same number of selected testing
data: In Table II, we present the results of DeepReduce, CES,

and RANDOM, each of which is required to select the same

number of testing data. The column “Acc” represents the test

accuracy achieved by the selected testing data, “ΔAcc” repre-

sents the absolute difference between the accuracy achieved by

the selected testing data and the original one, “Size” represents

the amount of selected testing data, “Ratio” represents the

reduction ratio. “KL” represents the KL value between the

selected testing data and the whole testing data, which is

calculated based on Formula 1. CES and RANDOM take the

results in “Size” (produced by DeepReduce) as input.

From Table II, DeepReduce reduces the whole testing data

significantly, leaving only 2.5% to 17.9% testing data, with

an average of 7.5%. Meanwhile, it achieves an average of

0.0063 in terms of ΔAcc, indicating that the effectiveness of

DeepReduce in performance estimation is good. Even in the

worst case, the ΔAcc is up to 0.0181. Compared with CES,

DeepReduce outperforms it in terms of ΔAcc on 13 (out of 15)

models. We emphasize the winner of the comparison between

DeepReduce and CES through the bold font in the table.

Besides, the average ΔAcc of CES is 0.0215, while the

average ΔAcc of DeepReduce is only 0.0063, indicating that

the improvement of DeepReduce over CES is about 71.2% on

average. We also conducted Wilcoxon Signed-Rank Test [26]

(with 0.05 significance level) on the results of ΔAcc. The

p-value is 0.0009, indicating that DeepReduce significantly

outperforms CES in terms of ΔAcc. Since CES has its own

reduction metric “KL” (i.e., different division strategies), we

also present the results of its KL value in Column “KL”. From

the table, the KL values achieved by CES are still much larger

than the ones achieved by DeepReduce (0.001), indicating that

the similarity of output distribution achieved by CES is worse

than the one achieved by DeepReduce.

Regarding to the comparison between DeepReduce and

RANDOM, DeepReduce also outperforms RANDOM in terms

of both ΔAcc and KL values. The Wilcoxon Singed-Rank
Test also shows that the results is significant (whose p-
value is 0.0332), i.e., DeepReduce significantly outperforms

RANDOM in terms of ΔAcc. Considering that the results of

RANDOM may vary a lot in practice, e.g., the ΔAcc of RAN-

DOM varies from 0.0009 to 0.0511 on NIN (CIFARA-10),

DeepReduce is more practical and effective than RANDOM.

DeepReduce also outperforms CES in terms of generality.

Note that the number of reduced testing data needed for an

294

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Model information and the effectiveness of DeepReduce (using the same number of selected testing data).

Dataset Model Original Acc
DeepReduce CES RANDOM

Acc Δacc Size Ratio Acc Δacc KL Acc Δacc KL

CIFAR-10

NIN 0.8815 0.8754 0.0061 289 2.9% 0.8948 0.0133 0.0606 0.8796 0.0145 0.0326
VGG19 0.9346 0.9249 0.0097 493 4.9% 0.9118 0.0228 0.0287 0.9328 0.0094 0.0190
ResNet 0.9220 0.9194 0.0026 273 2.7% 0.9414 0.0194 0.0533 0.9253 0.0137 0.0361

WideResNet 0.9537 0.9491 0.0046 373 3.7% 0.9456 0.0081 0.0532 0.9539 0.0082 0.0255
DenseNet 0.9463 0.9492 0.0029 669 6.7% 0.9584 0.0121 0.0337 0.9456 0.0064 0.0136

MNIST
Lenet1 0.9754 0.9935 0.0181 306 3.1% 0.9889 0.0135 0.0931 0.9856 0.0112 0.0325
Lenet4 0.9848 0.9799 0.0049 298 3.0% 0.9906 0.0058 0.0542 0.9884 0.0057 0.0337
Lenet5 0.9858 0.9960 0.0102 250 2.5% 0.9944 0.0086 0.0689 0.9909 0.0068 0.0403

CIFAR-100

NIN 0.5698 0.5625 0.0073 1,360 13.6% 0.6031 0.0333 0.0097 0.5700 0.0081 0.0061
VGG19 0.6159 0.6082 0.0077 1,294 12.9% 0.6525 0.0366 0.0080 0.6175 0.0097 0.0064

ResNet50 0.5541 0.5609 0.0068 1,797 17.9% 0.5902 0.0293 0.0102 0.5536 0.0098 0.0044
GoogleNet 0.6939 0.6966 0.0027 1,447 14.5% 0.7504 0.0565 0.0126 0.6904 0.0086 0.0056

IMAGENET
ResNet50 0.7470 0.7457 0.0013 4239 8.5% 0.7754 0.0284 0.0070 0.7483 0.0052 0.0021
VGG16 0.7127 0.7087 0.0040 3985 8.0% 0.7246 0.0119 0.0049 0.7112 0.0060 0.0022
VGG19 0.7126 0.7089 0.0037 4029 8.1% 0.7268 0.0142 0.0048 0.7112 0.0054 0.0023

Average 0.8127 0.8121 0.0062 1,407 7.5% 0.8300 0.0215 0.0334 0.8136 0.0085 0.0174

TABLE III: Model information and the effectiveness of DeepReduce (using the same termination criterion).

Dataset Model Original Acc
DeepReduce CESkl RANDOMkl

Acc Δacc Size Ratio Acc Δacc Ratio Acc Δacc Ratio

CIFAR-10

NIN 0.8815 0.8754 0.0061 289 2.9% 0.8793 0.0022 29.4% 0.8819 0.0026 47.8%
VGG19 0.9346 0.9249 0.0097 493 4.9% 0.9336 0.0010 33.0% 0.9351 0.0019 48.8%
ResNet 0.9220 0.9194 0.0026 273 2.7% 0.9228 0.0008 18.5% 0.9213 0.0021 48.4%

WideResNet 0.9537 0.9491 0.0046 373 3.7% 0.9533 0.0004 33.2% 0.9535 0.0019 48.3%
DenseNet 0.9463 0.9492 0.0029 669 6.7% 0.9463 0.0000 34.2% 0.9460 0.0019 48.2%

MNIST
Lenet1 0.9754 0.9935 0.0181 306 3.1% 0.9861 0.0107 35.4% 0.9857 0.0103 48.9%
Lenet4 0.9848 0.9799 0.0049 298 3.0% 0.9887 0.0039 18.2% 0.9890 0.0042 48.2%
Lenet5 0.9858 0.9960 0.0102 250 2.5% 0.9910 0.0052 17.9% 0.9907 0.0049 49.2%

CIFAR-100

NIN 0.5698 0.5625 0.0073 1,360 13.6% 0.5778 0.0080 32.7% 0.5691 0.0040 48.6%
VGG19 0.6159 0.6082 0.0077 1,294 12.9% 0.6189 0.0030 32.8% 0.6159 0.0037 48.5%

ResNet50 0.5541 0.5609 0.0068 1,797 17.9% 0.5626 0.0085 48.1% 0.5541 0.0034 48.8%
GoogleNet 0.6939 0.6966 0.0027 1,447 14.5% 0.6959 0.0020 45.1% 0.6941 0.0034 48.9%

IMAGENET
ResNet50 0.7470 0.7457 0.0013 4239 8.5% 0.7703 0.0233 23.8% 0.7466 0.0034 80.2%
VGG16 0.7127 0.7087 0.0040 3985 8.0% 0.7128 0.0001 21.6% 0.7138 0.0037 79.1%
VGG19 0.7129 0.7089 0.0037 4029 8.1% 0.7113 0.0013 21.6% 0.7122 0.0038 79.1%

Average 0.8127 0.8121 0.0062 1,407 7.5% 0.8167 0.0047 29.7% 0.8139 0.0037 54.7%

early estimation on different datasets may varies a lot, which is

also verified according our evaluation results, the performance

of DeepReduce is similar on different datasets in terms of

ΔAcc. However, the performance of CES varies a lot. For

example, the ΔAcc of CES on CIFAR100 is much larger than

the one on other datasets.

In summary, the results show that DeepReduce can save

over 92.5% (1-7.5%) testing cost on average. Besides, the

selected testing data of DeepReduce achieve a similar test

accuracy as the whole testing data do, indicating that DeepRe-

duce is effective in performance estimation of DL models.

2) Comparison using the same KL value: Table III

presents the comparison results of DeepReduce, CESkl, and

RANDOMkl, each of which uses the same KL value (i.e.,

0.001) in the termination criterion. DeepReduce outperforms

CESkl and RANDOMklin terms of the number of selected

testing data. Note that all the three approaches, i.e., DeepRe-

duce, CESkl, and RANDOMkl, use the same setting of α,

but DeepReduce selects much less testing data compared

with the others. From the table, the amount of selected data

obtained by CESkl range from 17.9% to 48.1%, with an

average of 29.7%, while the amount of selected data obtained

by random approach range from 47.8% to 80.2%, with an

average of 54.7%. Thus, DeepReduce outperforms the other

approaches on average in reduction size, while providing

similar performance estimation.

CES and CESkl are random sampling approaches with

a carefully designed strategy, and thus they may not al-

ways perform well. In other words, it is not clear whether

CES/CESkl is able to achieve consistently good performance

in practice. To answer this question, we run CES on ResNet

(CIFAR-10) for 50 times, and find that the test accuracy

achieved by the selected testing data ranges from 0.9011

to 0.9744, indicating that the performance of CES is not

stable in practice. In comparison, DeepReduce is a stable

approach without uncertainty, indicating that DeepReduce is

more stable than CES/CESkl. Furthermore, CES/CESkl uses

the output distribution of neurons in the last hidden layer to

guide sampling. Considering the large number of neurons in

the last hidden layer, the time cost of CES/CESkl tends to be

large. For example, on ResNet50 (CIFAR-100), CES spends

more than 3 hours on testing data reduction and achieves

17.9% data reduction with ΔAcc of 0.0379 and KL value

of 0.0102. In comparison, DeepReduce spends 376 seconds

to reduce the testing data to 17.9% and achieves the ΔAcc of

0.0094 and KL of 0.0010. Thus, DeepReduce is more practical

than CES/CESkl as the former is more stable and efficient.

Besides, DeepReduce selects more testing data on two

datasets (i.e., CIFAR-100 and IMAGENET) than the others

(i.e., CIFAR-10 and MNIST), and we suspect the reason to be

the differences between datasets. In particular, both CIFAR-10

and MNIST divide all images into 10 classes, while CIFAR-

295

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

0.
05

0.
01

0.
00

5

0.
00

1

0.
00

09

0.
00

08

0

2

4

6

·10−2

KL

Δ
A
cc

NIN VGG19 ResNet

WideResNet DenseNet

(a) CIFAR-10

0.
05

0.
01

0.
00

5

0.
00

1

0.
00

09

0.
00

08

0.5

1

1.5

2
·10−2

KL

Δ
A
cc

Lenet1 Lenet4

Lenet5

(b) MNIST

0.
05

0.
01

0.
00

5

0.
00

1

0.
00

09

0.
00

08

0

2

4

6

·10−2

KL

Δ
A
cc

NIN VGG19

ResNet50 GoogleNet

(c) CIFAR-100

0.
05

0.
01

0.
00

5

0.
00

1

0.
00

09

0.
00

08

0

5 · 10−2

0.1

0.15

KL

Δ
A
cc

ResNet50 VGG16

VGG19

(d) IMAGENET

HGS
0.05

0.01
0.005

0.001
0.0009

0.0008

0

200

400

600

KL

S
iz

e

NIN VGG19 ResNet

WideResNet DenseNet

(e) CIFAR-10

HGS
0.05

0.01
0.005

0.001
0.0009

0.0008

0

100

200

300

KL

S
iz

e

Lenet1 Lenet4

Lenet5

(f) MNIST

HGS
0.05

0.01
0.005

0.001
0.0009

0.0008

0

500

1,000

1,500

2,000

KL

S
iz

e

NIN VGG19

ResNet50 GoogleNet

(g) CIFAR-100

HGS
0.05

0.01
0.005

0.001
0.0009

0.0008

2,000

4,000

KL

S
iz

e

ResNet50 VGG16

VGG19

(h) IMAGENET

Fig. 1: Results with different termination criteria (α) on four datasets.
TABLE IV: Results of DeepReduce with various neuron coverage criteria when α in KL is set to be 0.001.

Dataset Model
NC(0.25) NC(0.5) NC(0.75) NBC SNAC TKNC(1) TKNC(2) TKNC(3)

ΔAcc Size ΔAcc Size ΔAcc Size ΔAcc Size ΔAcc Size ΔAcc Size ΔAcc Size ΔAcc Size

CIFAR-10

NIN 0.0119 276 0.0061 289 0.0074 369 0.0057 532 0.0081 498 0.0045 512 0.0018 482 0.0267 434
VGG19 0.0130 286 0.0097 493 0.0094 3288 0.0034 1886 0.0094 1358 0.0068 4545 0.0071 4717 0.0044 4654
ResNet 0.0021 287 0.0026 273 0.0307 275 0.0118 619 0.0070 459 0.0007 608 0.0024 485 0.0005 426

WideResNet 0.0133 302 0.0046 373 0.0021 1493 0.0029 2257 0.0005 1377 0.0115 2925 0.0074 2793 0.0064 2886
DenseNet 0.0106 325 0.0029 669 0.0097 1261 0.0021 967 0.0044 671 0.0053 1458 0.0041 1291 0.0002 1168

MNIST
Lenet1 0.0046 274 0.0181 306 0.0173 275 0.0075 293 0.0061 270 0.0073 289 0.0147 302 0.0117 310
Lenet4 0.0037 317 0.0049 298 0.0047 285 0.0017 296 0.0043 275 0.0020 304 0.0079 275 0.0080 279
Lenet5 0.0078 313 0.0102 250 0.0108 298 0.0016 318 0.0106 279 0.0045 308 0.0014 320 0.0003 276

CIFAR-100

NIN 0.0011 1368 0.0073 1360 0.0048 1354 0.0029 1547 0.0076 1414 0.0010 1540 0.0037 1388 0.0195 136
VGG19 0.0186 1346 0.0077 1294 0.0033 1376 0.0011 2209 0.0087 1710 0.0052 2394 0.0108 2191 0.0057 2035

ResNet50 0.0062 1326 0.0068 1797 0.0081 3248 0.0030 4906 0.0118 3520 0.0031 3647 0.0083 3647 0.0048 3625
GoogleNet 0.0176 1338 0.0027 1447 0.0083 1759 0.0024 2065 0.0015 1681 0.0014 2580 0.0041 2347 0.0085 2228

100 and IMAGENET divide all images into 100 and 1,000

classes, respectively. Therefore, on the latter two datasets,

more testing data are needed to be selected to be representative

of a larger number of classes.

To sum up, DeepReduce accurately estimates the perfor-

mance of DL models with less testing data. Furthermore, it

outperforms the baseline approaches and is more practical.

B. Results for RQ2

We investigated the performance of our approach with

different independent variables (i.e., neuron coverage criteria

and termination criteria). We set α in the termination criterion

to different values, i.e., 0.05, 0.01, 0.005, and 0.001, and use

various coverage criteria. To understand the influence caused

by termination criteria, we applied DeepReduce with various

α values but fixed coverage criterion NC(0.5), and the results

are shown in Fig.1. In these figures, each line represents the

results of one model.

From these figures, when α is smaller than 0.001, the

changes in ΔAcc produced by the selected testing data are

small. When α is larger than 0.001, the ΔAcc fluctuates with

different α values. On the other hand, the smaller the α is, the

more the testing data are selected by DeepReduce. Moreover,

when α is smaller than 0.001, much more testing data are

needed in order to satisfy the requirement of α. Considering

both ΔAcc and reduction size, α = 0.001 is a practical choice.

In Fig.1e-1h, the “HGS” in x-axis represents the number of

testing data selected in the first phase (HGS). When setting

α = 0.001 in the algorithm, DeepReduce selects more testing

data in the second phase than the data selected in the first

phase, with the purpose of approximating output distribution.

That is, the testing data selected for the purpose of testing

adequacy cannot satisfy the requirement on similar output

distribution. Therefore, more testing data are needed in order

to achieve the similar output distribution after the first phase

(with HGS). This observation can be found on all the datasets.
To figure out the influence caused by various neuron cov-

erage criteria, we set α in the termination criterion to 0.001

and investigate the performance of DeepReduce with various

coverage criteria. The results are shown in Table IV. From

the table, under different neuron coverage criteria, the ΔAcc
achieved by DeepReduce in estimating DL model performance

is close. However, different coverage criteria influence the

number of selected testing data to a certain extent. NC(0.5) and

NC(0.25) tend to select few testing data, whereas three TKNC

tend to select much more testing data. For example, on VGG19

(CIFAR10), DeepReduce selects 4,545 testing data when using

TKNC(1), which is much larger than the number obtained

by other criteria (e.g., NC(0.5) and NBC). Through further

analysis, we found that the large number of selected testing

data are caused by the first phase of our reduction algorithm.

As the testing adequacy measured by TKNC is hard to satisfy,

296

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Sensitivity results for different components

Model Variant1 Variant2 Variant3 Variant4

Metrics ΔAcc KL ΔAcc KL ΔAcc KL ΔAcc KL

NIN 0.0147 0.001 0.0095 0.017 0.0684 0.017 0.0147 0.031
VGG19 0.0045 <0.001 0.0025 0.011 0.0928 0.028 0.0157 0.033
ResNet 0.0157 0.001 0.0209 0.010 0.1015 0.069 0.0062 0.039

WideResNet 0.0180 0.001 0.0020 0.019 0.0985 0.039 0.0007 0.025
DenseNet 0.0059 <0.001 0.0091 0.012 0.0450 0.010 0.0031 0.017

Average 0.0118 0.001 0.0088 0.014 0.0634 0.033 0.0080 0.029

TABLE VI: Effectiveness of DeepReduce in regression scenarios (on
the NIN model)

Metrics
Modifications

Structural Changes Non-Structural Changes
ADL DEL ADN DEN LR MO DR

Acc(Actual) 0.8816 0.8734 0.8857 0.8808 0.8480 0.8699 0.8820
Acc(DeepReduce) 0.8731 0.8625 0.8776 0.8676 0.8350 0.8600 0.8715

ΔAcc 0.0085 0.0108 0.0089 0.0131 0.0130 0.0099 0.0105

DeepReduce tends to select more testing data to achieve the

same neuron coverage. For example, on VGG19 (CIFAR10),

DeepReduce selects 1,655 testing data by adopting HGS on

TKNC(1), whereas selects 94 testing data by adopting HGS

on NC(0.5). However, the similarity of the output distribution

between the testing data selected by HGS and the original ones

is not small. In order to approximate the output distribution

between the selected testing data and the original ones, a great

amount number of testing data are needed in the second phase

of DeepReduce. Similar observation can also be found on the

results using other neuron coverage criteria. In sum, neuron

coverage criteria affect slightly on DeepReduce in terms of

accuracy, but have more important influence on DeepReduce

in terms of the number of selected testing data.

Note that different neuron coverage criteria are designed

with different purposes. For example, NC is designed to mea-

sure the degree of neuron activation, while NBC is designed

to measure to what extent the corner-case region is covered

by testing data. DeepReduce is not specific to one criterion,

but general to various criteria. Therefore, in the future we will

investigate the performance of DeepReduce with more criteria.

In summary, in terms of estimation accuracy, DeepReduce

tends to perform better when the termination criterion gets

stricter (a smaller α), and it achieves similar performance with

different neuron coverage. In our experiments, we set α =

0.001 and using NC(0.5) as default settings.

C. Results for RQ3

The sensitivity results are given by Table V. The comparison

results of DeepReduce can refer to Column “DeepReduce”

in Table II, while the KL values of DeepReduce are always

0.001. In general, the ΔAcc results and KL values of each

variant are usually larger than DeepReduce, indicating that

each component positively contributes to the performance

of DeepReduce. In other words, without either component,

DeepReduce tends to perform worse.

In particular, in terms of ΔAcc, Variant3 performs the

worst comparing with the other variants, indicating that the

corresponding component (i.e., the division strategy for output

distribution) contributes the most for DeepReduce. It is reason-

able as the division strategy performs well in distinguishing

the distribution of the outputs of neurons in the last layer.

Each neuron in the last layer represents the probability of

being divided into a particular class. Given a neuron, those

testing data which do not fall into this class will be assigned

with very small values (e.g., less than 0.1). However, only a

small amount of testing data will be classified into the same

class, while many other testing data do not fall into this class.

That is, the output distribution on each neuron is more likely

heavy-tailed. The division strategy used in DeepReduce divide

the output range into several sections, each of which contains

the same number of unique output. Therefore, it performs well

in distinguishing the heavy-tailed distribution.

In terms of KL values, all the components except the

first phase contribute to the performance of DeepReduce.

Note that a small KL value indicates that the similarity

between the selected testing data and the original ones is

large. From the table, the KL values achieved by Variant2,

Variant3, and Variant4 are much larger than 0.001, which is

the recommended KL value according to our evaluation results

presented in Section IV-B. That is, more testing data need to be

selected by these variants in order to achieve a similar output

distribution. Considering that much more testing data are

selected to reduce the KL values (mentioned in Section IV-B),

these three components also contribute to the reduction size.

In addition, the time overhead of Variant2 and Variant3 are

larger than the others including DeepReduce. For example,

on VGG19 (CIFAR-10), the time overhead of Variant2 and

Variant3 are 1,414 and 563 seconds, while the time overhead

of DeepReduce is 14 seconds. For Variant2, the number of

neurons in the last-hidden layer is much larger than the ones in

the last layer, and thus DeepReduce is more time-consuming.

For Variant3, improper division strategy tends to place a great

proportion of data (e.g., about 90%) in the same section, and

thus KL minimization (Lines 29-33 in Algorithm 1) is more

time-consuming.

D. Results for RQ4

Due to space limit, we present only the average testing

results on the NIN (CIFAR-10) in Table VI, where Row

“Acc(Actual)” presents the actual accuracy achieved by the

whole testing data, Row “Acc(DeepReduce)” presents the

accuracy achieved by the testing data selected by DeepReduce,

and Row “ΔAcc” presents the difference between the above

two values. According to the table, the average ΔAcc ranges

from 0.0085 to 0.0131, indicating that DeepReduce performs

still well in estimating the performance of DL models even

when they have been slightly modified. However, compared

with Table II, the average ΔAcc of DeepReduceincreases from

0.0070 to 0.0024, indicating the performance of DeepReduce

in regression testing is a bit worse, resulting from model

modification.

Among the seven types of modifications, the ΔAcc values

of DEN and LR are the largest, while those of ADL and

ADN are the smallest, indicating that the former two types

of modification harm the performance of DeepReduce the

most, whereas ADL and ADN harms the performance of

297

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

DeepReduce the least. Besides, we find that DeepReduce is

more stable with various MO changes by further analysis.

Note that this experiment is conducted in a simplified re-

gression testing scenario, where the model is changed slightly

by following the given types of modification. In the future,

we will investigate the performance of DeepReduce with more

complex modifications.

V. RELATED WORK

A. Cost of Deep Learning Testing

Most of the existing work on DL testing focuses on testing

data generation [7], [13], [27]–[29]. However, due to the

large number of testing data, DL testing often suffers from

the cost problem. For example, a large number of testing

data require much efforts on manual labelling, and thus some

work investigates how to reduce this cost. In particular, Li et

al. [9] proposed two approaches CSS and CES to reduce the

amount of testing data required to be labelled based on cross-

entropy minimization. Chen et al. [30] proposed a cluster-

based selection technique to reduce labeling cost. Recently, Shi

et al. [31] proposed a prioritization approach DeepGiNi, which

identifies the testing data to be labelled earlier based on the

gini impurity of testing data. These works are related to ours,

because in general all of us target at the cost problem in DL

testing. However, these approaches address the cost problem

in different ways (i.e., selection, reduction or prioritization

using different algorithms with slightly different objectives).

Besides, DeepReduce is more stable on various models and its

improvement over CES is about 71.2% on average according

to the experiment results.

B. Test Reduction

Test reduction, also called as test minimization, aims to

obtain the minimal subset of the original test suite by sat-

isfyng the original test requirements [15], [32], [33]. In the

literature, a large number of test reduction algorithms have

been proposed. For example, Harrold et al. [15] proposed a

greedy heuristic (HGS) that repeatedly selects tests from the

remaining tests with minimal cardinality. Chen and Lau [32]

proposed another heuristic that identified essential and 1-to-

1 redundant tests from the original ones, which iteratively

picks essential, removes 1-to-1 redundant and greedily selects

tests covering a maximal number of unsatisfied requirements.

Black et al. [34] formulated the problem as a binary ILP model

by encoding the def-use coverage criteria and fault-revealing

ability of tests into the objective function. Besides the algo-

rithm, various conventional criteria have been proposed and

used to guide test reduction, e.g., structural coverage [35],

fault detection [36], [37], energy consumption [38], [39], and

even hybrid combinations of different coverage [40]. Our work

is similar to test reduction because both of them are to set a

subset of test cases (or testing data). However, our work is the

first one to early estimate a DL model’s performance, and thus

the selection criteria are different and the algorithms proposed

in conventional test reduction cannot be used directly to solve

our problem.

C. Criteria in DL Testing

To measure the testing adequacy in DL testing, various crite-

ria have been proposed in the literature, and have been used in

testing data generation [3], [5], [13], [41]. The mostly studied

testing adequacy criteria are neuron coverage criteria [13],

[14], [42]. Besides the neuron coverage criteria used or men-

tioned in prior sections, some other neuron coverage criteria

also exist. For example, Sun et al. [42] proposed a family of

fine-grained MC/DC neuron coverage criteria, Ma et al. [43]

proposed neuron state combination based criteria, and recently

Du et al. [44] proposed five coverage criteria for RNNs besides

two trace similarity metrics, including three state-level and

two transition-level coverage criteria. In addition to neuron

coverage criteria, there are also some other types of criteria. In

particular, Ma et al. [45] proposed a mutation-based criterion

for DNN testing by designing mutation operators for DNNs.

Besides, Islam et al. [46] also classified some modifications

for DNNs, which may be viewed as mutation operators. Kim

et al. [47] proposed surprise adequacy for DNNs, which

measures the dissimilarity between a test and the training

data set. Gerasimou et al. [48] proposed an Importance-Driven

testing adequacy criterion (IDC) for DL systems. In this paper,

we use some neuron coverage criteria to be representative of

testing adequacy in the evaluation, but our approach is not

specific to any specific criteria.

VI. CONCLUSION

In this paper, we defined an input reduction problem for

early estimation of DL model performance with the purpose

of cost-effective testing, and then proposed a two-phase ap-

proach DeepReduce, which selects a subset of testing data

by satisfying both testing adequacy and output distribution

similarity. To evaluate the proposed approach, we conducted

an experimental study on 15 DL models with four datasets. On

average, DeepReduce reduces the whole testing data to 7.5%

with the accuracy loss smaller than 0.0062. We conducted

sensitivity analysis on the components of DeepReduce and

found that each of them has contributions to the performance

of DeepReduce. Moreover, in the simplified regression testing

scenario given in this paper, the average accuracy loss in

regression testing is only 0.0104, indicating that DeepReduce

may be still useful for models with slight modification.

ACKNOWLEDGMENT

This work is partially supported National Natural Sci-

ence Foundation of China under Grant Nos. 61872008,

61861130363, and 61828201, as well as Australian Research

Council (ARC) Discovery Project DP200102940.

REFERENCES

[1] E. Amir, “Uber finds deadly accident likely caused by software set to
ignore objects on road.” The information, 2018.

[2] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An empir-
ical study on program failures of deep learning jobs,” in Proceedings of
the 42nd International Conference on Software Engineering (ICSE ’20).
IEEE/ACM, July 2020.

298

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

[3] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. ACM, 2019, pp. 146–
157.

[4] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in The 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, to appear.

[5] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. ACM, 2018, pp. 109–119.

[6] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in CVPR’14, June
2014, pp. 1701–1708.

[7] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 2018, pp. 303–
314.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec 2015.

[9] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting opera-
tional DNN testing efficiency through conditioning,” in Proceedings
of the ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019.
ACM, 2019, pp. 499–509.

[10] A. L. Gibbs and F. E. Su, “On choosing and bounding probability
metrics,” International statistical review, vol. 70, no. 3, pp. 419–435,
2002.

[11] H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input validation for
deep learning applications by crossing-layer dissection,” in Proceedings
of the 42nd International Conference on Software Engineering (ICSE
’20). IEEE/ACM, July 2020.

[12] S. Ma, Y. Liu, W. Lee, X. Zhang, and A. Grama, “MODE: automated
neural network model debugging via state differential analysis and input
selection,” in Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,
FL, USA, November 04-09, 2018. ACM, 2018, pp. 175–186.

[13] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in SOSP’17. ACM, 2017, pp. 1–18.

[14] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018. ACM, 2018, pp.
120–131.

[15] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for control-
ling the size of a test suite,” ACM TOSEM, vol. 2, no. 3, pp. 270–285,
1993.

[16] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[17] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[18] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar dataset,” online:
http://www.cs.toronto. edu/kriz/cifar.html, vol. 55, 2014.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F. Li, “Imagenet large scale visual recognition challenge,” Int. J. Comput.
Vis., vol. 115, no. 3, pp. 211–252, 2015.

[20] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR’16, 2016, pp. 770–778.

[23] S. Zagoruyko and N. Komodakis, “Wide residual networks,” CoRR, vol.
abs/1605.07146, 2016.

[24] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolu-
tional networks,” CoRR, vol. abs/1608.06993, 2016.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR’15. IEEE Computer Society, 2015, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/CVPR.2015.7298594

[26] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[27] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018. ACM, 2018, pp.
132–142.

[28] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep neural
networks,” in Proceedings of the 42nd International Conference on
Software Engineering, ICSE 2020, Seoul, South Korea, July 2020. IEEE
/ ACM, 2020.

[29] X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” in Proceedings of the 42nd International
Conference on Software Engineering, ICSE 2020, Seoul, South Korea,
July 2020. IEEE / ACM, 2020.

[30] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient dnn testing,” ACM Transactions on
Software Engineering and Methodology, 2020, to appear.

[31] Q. Shi, J. Wan, Y. Feng, C. Fang, and Z. Chen, “Deepgini: Prioritizing
massive tests to reduce labeling cost,” CoRR, vol. abs/1903.00661, 2019.

[32] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of
a test suite,” Inf. Process. Lett., vol. 60, no. 3, pp. 135–141, 1996.

[33] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test
suite reduction,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 738–748.

[34] J. Black, E. Melachrinoudis, and D. R. Kaeli, “Bi-criteria models
for all-uses test suite reduction,” in 26th International Conference on
Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United
Kingdom, A. Finkelstein, J. Estublier, and D. S. Rosenblum, Eds. IEEE
Computer Society, 2004, pp. 106–115.

[35] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How
do assertions impact coverage-based test-suite reduction?” in 2017
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017. IEEE
Computer Society, 2017, pp. 418–423.

[36] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce,
“Evaluating non-adequate test-case reduction,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2016, Singapore, September 3-7, 2016. ACM, 2016, pp.
16–26.

[37] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand
test suite reduction,” in 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. IEEE
Computer Society, 2012, pp. 738–748.

[38] R. J. Behrouz, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbrücken, Germany, July 18-20, 2016. ACM, 2016, pp. 425–436.

[39] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond, “Integrated
energy-directed test suite optimization,” in International Symposium on
Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21
- 26, 2014. ACM, 2014, pp. 339–350.

[40] S. Sampath, R. C. Bryce, and A. M. Memon, “A uniform representation
of hybrid criteria for regression testing,” IEEE Trans. Software Eng.,
vol. 39, no. 10, pp. 1326–1344, 2013.

[41] A. Odena, C. Olsson, D. Andersen, and I. J. Goodfellow, “Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing,” in Proceed-
ings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, ser. Proceedings
of Machine Learning Research, vol. 97. PMLR, 2019, pp. 4901–4911.

[42] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural
networks,” CoRR, vol. abs/1803.04792, 2018. [Online]. Available:
http://arxiv.org/abs/1803.04792

299

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

[43] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 26th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019.
IEEE, 2019, pp. 614–618.

[44] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
model-based quantitative analysis of stateful deep learning systems,”
in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019. ACM, 2019, pp. 477–487.

[45] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation testing of deep
learning systems,” in 29th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2018, Memphis, TN, USA, October 15-
18, 2018. IEEE Computer Society, 2018, pp. 100–111.

[46] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep
neural networks: Fix patterns and challenges,” in Proceedings of the
42nd International Conference on Software Engineering (ICSE ’20).
IEEE/ACM, July 2020.

[47] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in Proceedings of the 41st International Con-
ference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019. IEEE / ACM, 2019, pp. 1039–1049.

[48] S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-driven
deep learning system testing,” in Proceedings of the 42nd International
Conference on Software Engineering, ICSE 2020, Seoul, South Korea,
July 2020. IEEE / ACM, 2020.

300

Authorized licensed use limited to: Peking University. Downloaded on June 13,2024 at 09:17:01 UTC from IEEE Xplore. Restrictions apply.

