
Recommending Good First Issues in GitHub OSS Projects

Wenxin Xiao∗

School of Computer Science, Peking

University, and Key Laboratory of

High Confidence Software

Technologies, Ministry of Education

Beijing, China

wenxin.xiao@stu.pku.edu.cn

Hao He∗

School of Computer Science, Peking

University, and Key Laboratory of

High Confidence Software

Technologies, Ministry of Education

Beijing, China

heh@pku.edu.cn

Weiwei Xu
School of Computer Science and

Technology, Soochow University

Suzhou, China

wwxu99@stu.suda.edu.cn

Xin Tan
School of Computer Science, Peking

University, and Key Laboratory of

High Confidence Software

Technologies, Ministry of Education

Beijing, China

tanxin16@pku.edu.cn

Jinhao Dong
School of Computer Science, Peking

University, and Key Laboratory of

High Confidence Software

Technologies, Ministry of Education

Beijing, China

dongjinhao@stu.pku.edu.cn

Minghui Zhou†

School of Computer Science, Peking

University, and Key Laboratory of

High Confidence Software

Technologies, Ministry of Education

Beijing, China

zhmh@pku.edu.cn

ABSTRACT

Attracting and retaining newcomers is vital for the sustainability

of an open-source software project. However, it is difficult for new-

comers to locate suitable development tasks, while existing “Good

First Issues” (GFI) in GitHub are often insufficient and inappropriate.

In this paper, we propose RecGFI, an effective practical approach for

the recommendation of good first issues to newcomers, which can

be used to relievemaintainers’ burden and help newcomers onboard.

RecGFI models an issue with features from multiple dimensions

(content, background, and dynamics) and uses an XGBoost classifier

to generate its probability of being a GFI. To evaluate RecGFI, we

collect 53,510 resolved issues among 100 GitHub projects and care-

fully restore their historical states to build ground truth datasets.

Our evaluation shows that RecGFI can achieve up to 0.853 AUC

in the ground truth dataset and outperforms alternative models.

Our interpretable analysis of the trained model further reveals in-

teresting observations about GFI characteristics. Finally, we report

latest issues (without GFI-signaling labels but recommended as

GFI by our approach) to project maintainers among which 16 are

confirmed as real GFIs and five have been resolved by a newcomer.

CCS CONCEPTS

• Software and its engineering→ Collaboration in software

development;Maintaining software.

KEYWORDS

open-source software, onboarding, good first issues

∗Both authors contributed equally in this work
†Corresponding Author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510196

ACM Reference Format:

Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui

Zhou. 2022. Recommending Good First Issues in GitHub OSS Projects. In

44th International Conference on Software Engineering (ICSE ’22), May 21–

29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3510003.3510196

1 INTRODUCTION

Open Source Software (OSS) has become the infrastructure of our

society. One possible explanation for the success of OSS is its unique

development model [37, 40], in which the source code is open for

everyone and everyone can contribute back to the source code.

Although such development model permits the emergence of enor-

mous OSS serving a wide spectrum of requirements, it also poses

challenges on the sustainability of OSS. Existing studies have shown

that OSS are prone to sustainability failures [9, 58], which may im-

pact a large number of downstream clients and cause severe losses.

One major challenge of OSS sustainability is to attract and re-

tain capable newcomers [65–67]. Successful onboarding into OSS

projects can be very difficult, especially for developers who are

new to open-source and for projects with a long development

history [32]. To help newcomers become familiar with an OSS

project, GitHub provides a list of best practices, such as providing

READMEs, formulating contribution guidelines, etc [18]. Even if

sufficient documentation is provided, it is still very challenging for

newcomers to locate suitable development tasks to start with [49].

For example, not needed pull requests are among the most com-

mon cause for rejected code in OSS projects because newcomers

often submit “superseded/duplicated pull-requests” [51]. Recently,

GitHub recommends project maintainers to label issues as “Good

First Issues” (GFIs) [14], which is an explicit signal showing that

this issue is suitable and welcome for newcomers to solve.1

However, several recent studies have raised alarming concerns

about the current GFI mechanism [1, 23, 56]. First, manually labeled

GFIs are often highly insufficient [1, 56], which indicates that many

1We use the term Good First Issue (GFI) and “issues suitable for newcomers” inter-
changeably throughout this paper.

1830

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510196&domain=pdf&date_stamp=2022-07-05

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou

actual GFIs do not have a GFI label and may not be discovered by

newcomers. Second, the cognitive mismatch between newcomers

and veterans hinders the effectiveness of GFIs [56], which indicates

that labeling GFIs can be a challenging task and existing labeled

GFIs may be inappropriate for newcomers. To tackle the insuffi-

ciency and inappropriateness of current GFIs, we envision the use of

an automated approach for GFI recommendation. Such an approach

can not only ease the burden of maintainers from labeling GFIs, but

can also provide the most suitable task for newcomers so that they

are more likely to succeed in making their initial contributions.

In this paper, we propose RecGFI, a machine learning approach

toward this vision. RecGFI learns from historical issues actually

resolved by newcomers instead of learning from issues having a GFI

label, as these labels are scarce and potentially inappropriate [1, 56].

For each historical issue, RecGFI extracts features from heteroge-

neous sources of information including issue content, background,

and dynamics. RecGFI further uses an XGBoost classifier [8] to

learn the difference between issues resolved by newcomers and

non-newcomers. Then, for all open issues, RecGFI predicts their

probability of being GFIs using the trained model and returns the

most probable GFIs for human inspection. Newcomers can browse

through the recommendations to find suitable tasks, while project

maintainers can inspect and confirm the recommendations (e.g., by

adding labels) with reduced manual effort.

To evaluate RecGFI, we collect 53,510 issues from 100 GitHub

projects using the GHTorrent dataset (dump 2021-03-06) [19] and

GitHub REST API [15]. To simulate realistic scenarios and avoid

leakage of future data [57], we create two ground truth datasets by

carefully restoring features from two time points: the time when

the issue is created and the time before the issue is being worked

on. Our performance evaluation shows that RecGFI can achieve up

to 0.801 AUC at 1st time point, and up to 0.853 AUC at 2nd time

point. RecGFI also outperforms other baseline approaches and al-

ternatives with less features. We further interpret the trained model

using Local Interpretable Model-agnostic Explanations (LIME) [41]

and analyze statistics on the dataset to study characteristics of

issues suitable for newcomers. Our analysis reveals that RecGFI

is more likely to predict an issue as a GFI if 1) the reporter has

“just enough” experience in commits and more experience in re-

porting issues; 2) experienced developers participate in the issue

(e.g., by adding labels, etc); and 3) the project has an active owner

and more recently onboarded newcomers. Finally, to evaluate the

practical usefulness of RecGFI, we collect 511 latest issues from

the 100 GitHub projects, report 60 issues (without GFI-signaling

labels) to project maintainers, and monitor how these issues are

resolved. At the time of writing, we receive response for 33 issues

and 16 are confirmed as real GFIs. After the 16 issues are labeled as

GFIs by project maintainers, three have already been resolved by

a newcomer. Even for the 17 issues denied by project maintainers,

two have also been resolved by a newcomer. We share a replication

package at https://zenodo.org/record/5881117#.YeliUEBBwlI.

2 THE GFI RECOMMENDATION PROBLEM

2.1 Problem in Reality

It is well-known that making the first contribution to an OSS project

is hard. For example, a newcomer recently complains that:

There’s a lack of resources out there for someone who wants to get

started contributing to open-source mostly because they find it hard

to make the first contribution and write the first piece of code.2

One major reason hindering newcomers’ contribution to open-

source is the lack of sufficient labeled GFIs in most GitHub OSS

projects. In a sample of 105 highly popular GitHub projects, only

46 projects have GFIs and only 1.5% of all issues in the 46 projects

are labeled as GFIs [1]; another study reports a median proportion

of only 4% for projects with labeled GFIs [56]. The insufficiency of

GFIs is already preventing newcomers from participating in OSS

projects. For example, a newcomer complains on Reddit that:

Looking to contribute to open source, but issues labeled good-first-

issue are all taken...I’ve had a hard time finding issues that are good

for beginners that aren’t completely taken over already.3

We also observe similar requests in GitHub issues because the

newcomer cannot find any GFIs:

I had gone through the whole project and I’m really excited to

contribute to it if is there any good first issues then please assign me.4

The lack of labeled GFIs in an OSS project may harm its sustain-

ability in the long term. However, a typical OSS project generally

have hundreds to thousands of open issues and maintainers may

lack time to manually evaluate whether these issues are GFIs. For

example, netlify/netlify-cms has 591 open issues at the time of

writing but only 97 are labeled as GFIs. Even if netlify/netlify-cms

already have a much higher GFI portion compared with the median

4% [56], some real GFIs may still be missed by maintainers and

can not be discovered by newcomers. For example, the issue in Fig-

ure 1 is actually suitable for newcomers but nobody has added any

GFI-signaling label.5 In addition, the manual labeling of GFIs may

be even challenging for project maintainers due to the cognitive

mismatch between newcomers and veterans. A well-understood

construct of the “zone of proximal development” [59] describes the

case where experts are usually not effective at training or teaching

novices. This observation is supported by data: 40.9% of GFIs are

not solved by newcomers and 31.2% of newcomers fail to solve a

GFI even after several attempts [56].

In such scenarios, an automated recommendation approach will

be useful: newcomers can browse through the recommendations

to find issues to work on, while project maintainers can check the

recommendations and label them with much less effort. In fact, the

issue in Figure 1 is only added with a GFI label after it is discovered

by our RecGFI approach (see Section 4.5).

2.2 Problem Formulation

Given a list of open issues in a GitHub project, the goal of GFI

recommendation is to find a subset of issues that are likely suitable

for newcomers. Therefore, we formulate the problem to be resolved

as binary classification. The objective is to utilize information of

historical issues to learn a model 𝑓 (·) and predict whether an given

2https://www.reddit.com/r/opensource/comments/otuhdv/when_you_find_an_
opensource_project_you_like_what/
3https://www.reddit.com/r/learnprogramming/comments/j48nkn/looking_to_
contribute_to_open_source_but_issues/
4https://github.com/accordproject/cicero/issues/693
5The issue can be accessed at https://github.com/netlify/netlify-cms/issues/5735. In
Figure 1, some information (e.g., screenshots) is omitted due to space constraints. The
issue is suitable for newcomers because it is relatively simple, has reproduction steps,
detailed screenshots, and clear expectation of a resolution [56].

1831

Recommending Good First Issues in GitHub OSS Projects ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 1: A good first issue without any signaling label.

unresolved issue 𝒙 is a GFI. The learned model 𝑓 (·) by this objec-
tive can be used in flexible ways. For example, it can be used to

recommend a list of issues to newcomers in project websites or

suggest project maintainers to inspect label certain issues if the

model predicts them to be GFIs.

To learn 𝑓 (·), we need to define ground truth labels for historical
issues. As mentioned in Section 2.1, manually labeled GFIs are often

insufficient and inappropriate, and thus not suitable as ground truth

labels. In this paper, we propose to learn 𝑓 (·) to predict whether
an issue will be resolved by a newcomer. In the historical issues (i.e.,

the training dataset), we define 𝑓 (𝒙) = 1 if issue 𝒙 is resolved by a

newcomer and 𝑓 (𝒙) = 0 if issue 𝒙 is not resolved by a newcomer.
We define developers as newcomers in a project if they has con-

tributed no more than 𝑘 commits in this project, and we define the
developers as non-newcomers if otherwise.

We choose to introduce a threshold parameter 𝑘 for two reasons.
First, previous research has shown that not only developers who

have not contributed to the project, but also developers who have

successfully made contributions seek to resolve GFIs because they

believe that their capabilities are insufficient for other issues [56].

Second, the criteria of being a “newcomer” may be different across

projects and we want to retain some flexibility in problem formula-

tion. For example, successfully contributing one commit in complex

software systems like the Linux Kernel may indicate that the devel-

oper is already qualified and experienced enough, while in some

other projects making small contributions is much easier. The effect

of threshold 𝑘 on performance will be discussed in Section 4. In

real application scenarios, we expect project maintainers to choose

a proper 𝑘 and use the corresponding model for their project. We

will provide suggestions on choosing 𝑘 in Section 5.

3 APPROACH

In this section, we present RecGFI, our solution to the GFI recom-

mendation problem, including how it extracts features from three

heterogeneous sources of information and how it uses an XGBoost

classifier to learn from these features for GFI classification.

3.1 Feature Engineering

Identification and modeling of viable features is vital for the per-

formance of any recommender systems [45]. RecGFI extracts three

dimensions of features from an issue to abstract and learn evidence

indicating possible GFIs: Content, Background, and Dynamics.

3.1.1 Content. Intuitively, one can infer whether an issue is a GFI

after reading its content, including issue title, description, and labels.

Many kinds of information in issue content may be helpful in such

inference, such as whether the issue is clear, what kind of issue it

is, etc. Therefore, we derive the following features:

Title and Description. Intuitively, issues with longer, clearer,

and more detailed description should help newcomers understand

and resolve correctly. Therefore, we extract the following statistics

from issue title and description: length (i.e., number of words) of

issue title (len_title), length of issue description (len_body), num-

ber of URLs (#urls), number of code snippets (#code_snips), and

number of images (#imgs). These statistical features are frequently

used in previous work to measure the quality and granularity of

issue reports [24, 56]. We also compute the following readability

metrics for title and description: Coleman-Liau formula (coleman),

Kincaid Grade Level (kincaid), Flesch Reading Ease (flesch), and

Automated Readability Index (ARI) (ari). These readability metrics

are also used in previous work to measure the readability of bug

reports [7, 12, 34]. Furthermore, we use the training set to find the

50 most frequent keywords from descriptions of issues resolved by

newcomers and non-newcomers respectively. We remove common

words and get two keyword lists. For description of an issue, we

separately count number of words (#gfi_words and #nongfi_words)

in the two keyword lists. Finally, for issue title and description, we

compute TF-IDF [44] for the top 50 words with highest term fre-

quency (excluding stop words), forming two 50-dimension feature

vectors (tfidf_title and tfidf_description).

Labels. Labels are an effective approach to attach categorical

information to issues, such as topic, priority and development

task [54]. Except for generic labels (e.g., bug), a variety of custom

labels arewidely used in projects [26]. Certain types of labelsmay in-

dicate an issue as likely suitable for newcomers. To capture evidence

from labels, we divide common labels into 12 categories including

1) Task Type: Bug, Documentation, Test, Build, Enhancement,

Coding, or New Feature; 2) Difficulty/Priority: GFI-Signaling,

Medium Difficulty, or Difficult/Important; and 3) Status: Triaged

orUntriaged. To derive label categories and heuristics for automatic

categorization of labels, we count the occurrence of all labels in

our dataset (Section 4.2), manually categorize frequently-occurring

labels, and discuss detection rules until reaching a consensus. For

each category, we derive detection rules based on keyword match-

ing. For example, a label is considered as Bug if it contains keyword

“bug”, or GFI-Signaling if it contains any of the common keywords

provided by Tan et al. for newcomers [56], or Untriaged if it con-

tains keywords like “untriaged”, “needs triage”, etc. For each issue,

we count the numbers of labels belonging to the 12 categories and

the total number of labels (#labels), resulting in a 13-dimensional

feature vector.

3.1.2 Background. Apart from issue content, some issue back-

ground information may also be useful when inferring whether an

1832

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou

issue is a GFI. In RecGFI, we extract features from the following

sources of background information:

Reporter. Developers who have reported newcomer-resolved

issues may be more experienced in reporting issues and report

better GFIs. On the other hand, veterans may report complex issues

or issues missing information necessary for newcomers to resolve

this issue. Therefore, we collect the following features to charac-

terize reporter experience in 1) project development: being a new-

comer him/herself (rptr_is_new), number of commits (#cmt_proj),

issues (#issues_proj), and pull requests (#pr_proj) in the project; 2)

OSS development in general: number of commits (#cmt_all), issues

(#issues_all), and pull requests (#pr_all) in all over the GitHub,

number of repositories owned (#repo), number of stars received

in their own repositories (#stars_rptr) and number of followers

(#followers); and 3) GFI reporting: number of reported issues re-

solved by non-newcomers divided by number of reported issues

resolved by newcomers (nongfi/gfi). Additionally, we check if re-

porters have comments for the issues (has_comment) or participated

in any kind of events (has_event) to measure their participation in

their reported issues.

Project. OSS participants tend to seek projects that match task

difficulty with their skill level [31], while projects may vary in

difficulty, skill requirements, and attractiveness to external devel-

opers. Although project background information does not help

when recommending within a specific project, they may help cal-

ibrate other features and transfer knowledge from other projects

in cross-project recommendation scenarios. Therefore, we extract

the following project-related features 1) basic information: number

of stars (#stars), contributors (#contributors), commits (#cmt) and

closed pull requests (#pr); 2) owner information: same set of fea-

tures previously used to characterize reporter experience, excluding

rptr_is_new; 3) issue-related information: number of open issues

(#iss_open), median issue close time (iss_cls_t), and number/ratio

of issues resolved by newcomers (#gfi_proj and :gfi_proj).

3.1.3 Dynamics. An issue is not static after its creation. It may

attract attention from different stakeholders (maintainers, users,

etc), be supplemented with more information, or undergo status

changes. These dynamics may affect whether an issue is suitable for

newcomers and should also be considered during recommendation.

Therefore, we extract the following features:

Comments. After issue creation, other developers may com-

ment on issues to add supplementary information, provide guid-

ance/management (project maintainers), or express interest (poten-

tial resolvers). For each issue, we count the number of comments

(#comments) as the first feature. Then, similar to issue title and de-

scription, we generate a 50-dimension feature vector based on the

TF-IDF computed from comment text (tfidf_comment).

Events. The events of an issue reflects change of issue status

after its creation. Each event carries different meanings and may

be related to all kinds of activities within this GitHub repository.6

For example, a “subscribed” event indicates the issue is drawing at-

tention from more developers, while a “mentioned” event indicates

the issue is complicated and related with other issues. Similar to

labels, we first find the top-25 events with most occurrences in the

6https://docs.github.com/en/developers/webhooks-and-events/events/issue-event-
types

training set. Then, for each issue, we count total number of events

(#events) and the number of events for each frequently occurring

event type, forming a 26-dimension feature vector.

Participants. Similar to the issue reporter, the expertise of issue

participants may also play a role in determining whether the issue

is a GFI, since they may improve the issue (by adding labels, editing

titles, etc) and provide help to newcomers. Therefore, for all labelers

and event operators, we compute the same features for characteriz-

ing project development expertise and OSS development expertise

as the issue reporter. For GFI reporting expertise, we compute the

number of reported issues resolved by newcomers (#gfi_labeler

and #gfi_evtr) and ratio of reported issues resolved by newcomers

(:gfi_labeler and :gfi_evtr) . We take the average of all labelers’

expertise and the average of all event operators’ expertise as two

input feature vectors. We also compute the number/ratio of new-

comers among event operators (#event_new and :event_new), and

the number/ratio of newcomers among labelers (#labler_new and

:labeler_new) as additional issue participant features.

3.2 The XGBoost Classifier

RecGFI uses the eXtreme Gradient Boosting (XGBoost) [8] classifier

to learn from historical ground truth data and predict whether an

issue is a GFI. XGBoost is a gradient boosted regression tree ap-

proach with several clever optimizations which enables its excellent

performance and high scalability. XGBoost has achieved state-of-

the-art performance in a diverse range of application scenarios [8]

including software engineering tasks (e.g., [61, 63]). XGBoost is

also easily interpretable using the generated feature weights and

supports automated feature selection during ensemble of trees. We

will show in Section 4 that XGBoost is also highly competitive for

the GFI recommendation problem, outperforming other machine

learning approaches in our ground truth dataset.

Since the number of positive and negative samples is highly

imbalanced in the ground truth data (Table 1), RecGFI resamples

the training set before training the XGBoost classifier, which is a

common processing strategy for dealing with imbalanced data [4,

47]. Specifically, issues belonging to the minor class (i.e., issues

resolved by newcomers) are oversampled and issues belonging

to the major class (i.e., issues resolved by non-newcomers) are

undersampled, so that the proportion of two classes in training set

is balanced. Finally, given an unseen issue in the test set (Section 4.3)

or collected from GitHub (Section 4.5), RecGFI uses the trained

XGBoost classifier to output its probability of being an GFI.

4 EVALUATION

4.1 Research Questions

To test the ability of RecGFI in identifying suitable issues for new-

comers and to enrich our understanding on the GFI recommenda-

tion problem, we ask the following research questions:

RQ1: How does RecGFI perform in predictingwhether an

issue is suitable for newcomers? As discussed in Section 2.2,

there is no clear boundary of experience to divide newcomers and

non-newcomers, so we set a threshold 𝑘 in newcomer definition.
Therefore, we need to evaluate the performance of RecGFI under

different 𝑘 , in both time points, and in different settings. We also

present performance of RecGFI and baseline approaches to validate

1833

Recommending Good First Issues in GitHub OSS Projects ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

that RecGFI is more competitive, and investigate the contribution

of each feature group by comparing RecGFI with its variants.

RQ2: What kind of issues are suitable for newcomers?We

take the following two steps to facilitate the understanding of issues

suitable for newcomers: 1) use Local Interpretable Model-agnostic

Explanations (LIME) [41] to reveal contributions of features in the

trained model; 2) statistically analyze the differences between issues

resolved by newcomers and other issues.

RQ3: Is RecGFI helpful in a real world setting? Finally, to

demonstrate the practical usefulness of our approach, we collect

latest open issues and use our model to generate recommended GFIs.

Using the recommendations, we conduct a preliminary user study

among project maintainers and monitor how these recommended

GFIs are actually resolved.

4.2 Data Collection

We choose to build a dataset for the GFI recommendation prob-

lem because we are not aware of any prior work that provides

a similar dataset. To retrieve engineered open source software

projects willing to attract newcomers’ attention, we follow the

instructions introduced by Munaiah et al. [38] to select represen-

tative GitHub repositories. According to the Octoverse Report,7

JavaScript, Python, Java, TypeScript, C#, PHP, C++ and C are the top

eight popular programming languages on GitHub in 2020. We use

the latest Libraries.io8 dataset to filter out the repositories whose

primary programming language is one of them and keep 25,793

repositories with more than 100 stars, 5 contributors, 5 forks and

10 open issues. We further use the GHTorrent dataset [19] (dump

2021-03-06) to collect all issues for these projects and locate issues

with GFI-signaling labels according to the label set provided by Tan

et al. [56]. To locate projects with a strong interest in attracting

newcomers, we sort projects by the number of issues with GFI-

signaling labels and only keep the top 100 projects. These projects

have 1,417,497 issues in total and only 27,445 (1.93%) issues with

GFI-signaling labels (this GFI ratio is in line with previous stud-

ies [1, 56]).

Since the GHTorrent dataset [19] does not contain sufficient data

for our approach (e.g., lacking issue text), we further use the GitHub

REST API [15] to collect title, description, labels, comments, and

events for all issues and pull requests. Issue events are needed for

restoring historical issue state before certain time points and pull

requests are used to trace issues to their resolvers. This collection

process takes about one month using 15 GitHub API tokens.

Issues on GitHub have different nature such as asking questions,

reporting bugs, and proposing features [28]. Not all issues corre-

spond to a specific development task to be assigned to a specific

developer. Therefore, we need to locate issues resolved by a spe-

cific developer. However, recovering links between issues and the

version control system is still an open problem [43], so we resort

to a conservative but reliable approach: finding issues closed by a

commit or pull request (PR) according to GitHub conventions. In

GitHub, developers can link commits/PRs to issues using certain

text patterns (e.g., closes #num) which also tells GitHub to auto-

matically close the issue if the commit appears in the main branch

7https://octoverse.github.com/
8https://libraries.io/data

or the PR is merged [13, 17]. If an issue is closed by a commit, we

find the commit using the corresponding commit SHA recorded by

GitHub in the issue close event [16]. If an issue is closed by a PR,

we scan patterns in PR text (as defined in [17]) to find whether a

PR closed this issue. Finally, we are able to collect 53,510 issues and

their corresponding resolver in the 100 projects.

When computing features, we need to take time into consid-

eration to avoid leakage of future data which frequently leads to

overly optimistic results [57]. To simulate real world scenarios and

diversify our dataset, we restore issue historical state at two time

points: the time when the issue is created and before some devel-

oper starts to work on this issue. RecGFI should work well for both

time points since any issue in between the two time points may be

a possible GFI for newcomers. We compute the second time point

as follows: if an issue is referenced by a pull request or assigned

to a specific developer, it indicates that a developer may already

be working on it, so we use the first reference or assignment event

as the second time point; if the issue has never been referenced or

assigned, we set the second time point to the time before the issue is

closed. We compute all features at the two time points for learning

and prediction. We then compute the number of commits made

by the issue resolver before the issue is closed (excluding commits

that resolved this issue). This number can be used to distinguish

between newcomers/non-newcomers and generate ground truth

labels when training RecGFI with a given threshold.

4.3 RQ1: Performance

4.3.1 Performance Metrics. Since RecGFI outputs a probability, the

dataset is highly imbalanced (Table 1), and relative ranking of issues

matters more than a specific classification threshold, we choose to

useAUC (Area under the ROCCurve) [20] as themain performance

metric. AUC provides an aggregated measure of performance across

all classification thresholds and represents the probability that a

randomly chosen positive sample will be ranked higher than a ran-

domly chosen negative sample [35]. Additionally, we list accuracy

(𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁) and recall (𝑇𝑃

𝑇𝑃+𝐹𝑁) at classification threshold 0.5

as a reference, in which accuracy measures to what extent can

RecGFI correctly classify an issue and recall measures to what ex-

tent can RecGFI discover all GFIs in the ground truth dataset. We

favor recall over precision because precision represents the propor-

tion of issues that are resolved by newcomers among issues recom-

mended by the model. However, issues resolved by non-newcomers

may still be suitable for newcomers due to non-newcomers’ early

discovery and preemption (Section 4.4). Therefore, even an ideal

model that perfectly identifies all newcomer-friendly issues may

not reach a high precision, and precision may not be an appropriate

measure for our dataset. For all experiments (except for Table 2),

we use 10-fold cross-validation [53] to measure model performance

and record average value for each performance metric.

4.3.2 Performance Under Different Settings. As mentioned in Sec-

tion 2.2, the “perfect” definition for newcomer may vary across

different projects, so RecGFI should perform well for a range of 𝑘
thresholds. Table 1 shows the AUC, accuracy and recall of RecGFI

under different thresholds at two time points. We can observe from

Table 1 that the performance of RecGFI slightly increases as 𝑘 goes
larger, but all metrics are generally stable over a range of threshold

1834

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou

Table 1: Performance under different 𝑘 .

1st time point 2nd time point # of issues resolved by
𝑘 AUC Acc R AUC Acc R newcomer/non-newcomer

0 0.792 0.787 0.623 0.845 0.832 0.674 5,448/48,062
1 0.791 0.773 0.645 0.844 0.817 0.701 6,693/46,817
2 0.795 0.765 0.653 0.846 0.813 0.703 7,480/46,030
3 0.799 0.761 0.680 0.852 0.816 0.723 8,247/45,263
4 0.801 0.761 0.690 0.853 0.813 0.721 8,702/44,808

Table 2: Performance when RecGFI is trained with histori-

cal issues and validated on latest issues.

1st time point 2nd time point
𝑘 AUC Acc R AUC Acc R

0 0.780 0.781 0.596 0.815 0.813 0.621
1 0.779 0.759 0.632 0.815 0.794 0.661
2 0.780 0.757 0.630 0.814 0.790 0.668
3 0.786 0.755 0.660 0.823 0.790 0.685
4 0.790 0.754 0.674 0.823 0.788 0.689

Table 3: Cross-project performance under different 𝑘 .

1st time point 2nd time point
𝑘 AUC Acc R AUC Acc R

0 0.687 0.733 0.485 0.789 0.796 0.598
1 0.676 0.711 0.506 0.780 0.765 0.627
2 0.689 0.699 0.569 0.777 0.756 0.653
3 0.672 0.676 0.561 0.782 0.757 0.660
4 0.687 0.680 0.565 0.785 0.754 0.669

values and different time points. To validate that RecGFI can work

well in a realistic setting, we sort issues in our dataset by time and

divide them into 90% of past issues and 10% of latest issues. Then,

we use the former as the training set to train RecGFI and the latter

as the test set to evaluate performance. This setting is close to real

deployment when RecGFI is trained from historical data and used

to recommend GFIs among latest open issues. We summarize the

performance results in Table 2, in which only a slight AUC decrease

(1.4%∼3.8%) can be observed, indicating that RecGFI should also

perform well in real development settings. To investigate whether

RecGFI performs well in a cross-project setting, we further show

the results of 10-fold cross-validation by project (i.e., issues from

90 projects for training and issues from 10 projects for validation)

in Table 3. We observe a higher AUC decrease (6.6%∼15.9%), which

indicates that it may be more challenging to transfer learned GFI

knowledge to unseen OSS projects.

4.3.3 Performance Comparison with Alternatives. To comprehen-

sively analyze the performance of RecGFI and show the contribu-

tions of each data source, we compare with five baseline approaches

and several RecGFI variants:

We include the following baseline approaches:

• Random: Randomly predicts whether an issue is suitable for

newcomers, whose theoretical AUC is 0.5.

• Stanik et al. [48]: Extracts features from issue titles and de-

scriptions (lengths, TF-IDFs, and sentiment scores) and uses a

random forest model for prediction.

• Logistic Regression: Trains a logistic regression model from

all RecGFI features using the Python scikit-learn package [39].

• RandomForest:Trains a random forestmodel from all RecGFI

features using the Python scikit-learn package [39].

Table 4: Performance comparisons with baselines. (𝑘 = 0)

1st time point 2nd time point
Approaches AUC Acc R AUC Acc R

Random 0.502 0.514 0.489 0.496 0.491 0.504
Stanik et al. [48] 0.604 0.808 0.275 0.604 0.808 0.275
Logistic 0.727 0.620 0.704 0.740 0.614 0.739
Random Forest 0.775 0.846 0.455 0.809 0.864 0.476
Deep Neural Network 0.735 0.643 0.714 0.747 0.682 0.678

RecGFI-Title&Description 0.619 0.708 0.430 0.619 0.708 0.430
RecGFI-Labels 0.505 0.361 0.676 0.694 0.782 0.332
RecGFI-Reporter 0.717 0.670 0.647 0.770 0.716 0.659
RecGFI-Project 0.756 0.745 0.612 0.761 0.756 0.619
RecGFI-Comment - - - 0.582 0.745 0.349
RecGFI-Event - - - 0.590 0.630 0.488
RecGFI-Participant - - - 0.660 0.785 0.403

RecGFI-Abl-Title&Description 0.790 0.774 0.640 0.847 0.830 0.681
RecGFI-Abl-Labels 0.792 0.788 0.617 0.833 0.824 0.657
RecGFI-Abl-Reporter 0.758 0.770 0.583 0.796 0.798 0.611
RecGFI-Abl-Project 0.739 0.739 0.579 0.817 0.807 0.641
RecGFI-Abl-Comment - - - 0.844 0.829 0.674
RecGFI-Abl-Event - - - 0.840 0.827 0.669
RecGFI-Abl-Participant - - - 0.843 0.830 0.681

RecGFI 0.792 0.787 0.623 0.845 0.832 0.674

• Deep Neural Network: Uses two bidirectional LSTMs [22] to

jointly learn two embeddings for issue title and description,

and concatenates the embeddings with remaining numerical

features into fully connected layers for prediction.

We include the latter three as baselines because of their effectiveness

in previous software engineering work [3, 10, 42].

We also include the following variants of RecGFI:

• Variants of RecGFI with Single Data Source: The features

used in RecGFI can be summarized into seven data sources,

including issue title and description, labels, reporter, project,

comments, events, and participants.We keep only features from

one of the data sources in turn as input of ourmodel, resulting in

seven variants of RecGFI: RecGFI-Title&Description, RecGFI-

Labels, RecGFI-Reporter, RecGFI-Project, RecGFI-Comment,

RecGFI-Event and RecGFI-Participant.

• Variants of RecGFI with Ablated Data Source: For abla-

tion study, we remove each data source from RecGFI in turn,

and get the other seven variants of RecGFI, namely RecGFI-Abl-

Title&Description, RecGFI-Abl-Labels, RecGFI-Abl-Reporter,

RecGFI-Abl-Project, RecGFI-Abl-Comment, RecGFI-Abl-Event,

and RecGFI-Abl-Participant.

Because the choice of 𝑘 depends on the specific needs of projects,
we do not preset a “perfect” threshold for the following experiments.

We present the performance results with other approaches and

RecGFI-variants in Table 4 only for 𝑘 = 0 due to space constraints.

As shown in Table 4, RecGFI outperforms other approaches in terms

of AUC, indicating that RecGFI has better discrimination ability.9

Contrary to our intuition, reporter-related and project-related

features alone can achieve higher performance than features from

other single data sources. Experience of reporters may be closely

related to difficulty of issues they reported and it will be discussed

in detail in Section 4.4. For project-related features, possible expla-

nations are: 1) historical newcomer onboarding is a strong indicator

of whether an issue will attract a newcomer, and 2) project informa-

tion can supplement information related to issue difficulty. On the

9Note that even if some baselines can achieve higher accuracy or recall at classification
threshold 0.5, it does not mean that they are consistently better at all thresholds. The
latter property is measured by AUC which we use as the main performance indicator.

1835

Recommending Good First Issues in GitHub OSS Projects ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 2: Distribution of predicted probability for issues re-

solved by non-newcomers and newcomers.

other hand, the ablation study shows that removing features from

a single data source (including reporter-related and project-related

features) will not cause significant performance decrease in model

performance. The reason may be that different data sources contain

significant information overlap at the second time point.

At the first time point, RecGFI with only label-related features

performs the worst among all variant models, while its performance

improves at the second time point. The reason is that 89.68% issues

have no labels when they are reported but only 33.01% issues have

no labels at the second time point. As time goes by, more informa-

tion from labels is available and inaccurate labels are corrected.

Figure 2 shows the probability distribution of each prediction for

issues resolved by non-newcomers and newcomers with threshold

𝑘 = 0 at the second time point. We can observe that the model

successfully learns to distinguish issues suitable/inappropriate for

newcomers, though without a clear boundary. This is expected

because the notion of “newcomer suitable issue” is inherently am-

biguous. If an issue’s predicted probability is close to 0 or 1, it is

much more likely to be a correct classification.

Summary for RQ1:

RecGFI successfully learns to identify issues resolved by new-

comers and outperforms baseline approaches with up to 0.801

AUC (1st time point) and 0.853 AUC (2nd time point).

4.4 RQ2: Outline of Issues Suitable for
Newcomers

We use LIME [41] to explain the prediction results of RecGFI with

relative contributions of features for single sample. Given a test

sample, LIME generates adjacent data around the sample and fits

an interpretable linear model locally to learn weights of features.

Then, we draw an outline of issues suitable for newcomers through

interpretable predictions and statistical analysis of the dataset.

4.4.1 Interpretable Prediction for Feature Analysis. To understand

the role of different features of RecGFI in predicting issues within

a project, we apply LIME to the prediction results of issues from

the Microsoft/vscode10 project. Figure 3 shows weight distribution

of features other than those related to project, label and event types

on all test issues of vscode. Outliers are removed from Figure 3. On

the whole, the experience level of reporters is negatively correlated

to the probability that the reported issue is suitable for newcomers.

10https://github.com/Microsoft/vscode

Figure 3: Coefficients of partial features from vscode project

given by LIME.

Figure 4: Coefficients of reporter-related features for four

groups divided by reporters’ commits number in project.

The boundaries are 200, 400, and 600 respectively.

Figure 5: Predicted probability of issues resolved by non-

newcomers (blue) and newcomers (orange) under different

reporters’ commits number in project.

Specifically, developers who have reported more issues and con-

tributed more commits are less likely to report GFIs. Higher ratio

of historical non-GFIs also plays a similar role.

To further observe issues reported by developers with different

experiences, we divide reporters into four groups according to the

number of commits they contributed to the project. The coefficients

of reporter-related features are presented in Figure 4. Although in

general experience of reporters lowers the probability of prediction,

when they have fewer (less than 200) commits in project, more

experience means that issues reported by them are more likely

to be GFIs. Figure 5 confirms that issues reported by developers

with less than 200 commits in project are more likely to be GFIs.

In general, “just enough” experience in project leads to a higher

probability for the developer to report a GFI.

Intuitively, project-related features are not helpful when predict-

ing issues within the same project at the same time, because these

1836

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou

Figure 6: Number of projects with positive (orange) and neg-

ative (blue) coefficients for project-related features.

features are the same for the issues. These features are used to ad-

just the predicted probabilities of issues across projects or different

periods of the same project, so that issues can be classified using

the same probability threshold. In this way, project maintainers do

not need to spend extra effort to adjust probability threshold for

different period based on expert knowledge. To show what kind of

projects RecGFI tends to provide higher prediction probability, we

count the number of projects with positive/negative coefficients for

project-related features in Figure 6. Although the trend is not obvi-

ous for most features, we can still see that issues from projects with

higher ratio of historical GFIs (:gfi_proj) and more contributions

from project owner (e.g., issues_proj_owner and :gfi_owner) are

more likely to be suitable for newcomers. The reason may be that

project owner’s investment in project implies that newcomers may

get more support to resolve issues. Longer time needed to resolve

issues (iss_cls_t) indicates that newcomers have more opportuni-

ties to complete issues. This inference is consistent with the finding

in previous study that GFIs take longer time to be resolved [56].

4.4.2 Comparison of Issues Resolved by Non-Newcomers and New-

comers. We divide all issues in our dataset into two groups accord-

ing to whether they are resolved by non-newcomers or newcomers.

We first test all numerical features (106 in total) of the two groups

using Mann–Whitney U test to see if their median values are sig-

nificantly different [33]. Table 5 shows statistics of partial features

with 𝑝-value < 0.00047 (∼0.05/106, with Bonferroni correction [11]),
which indicates that medians of these features in the two groups

are significantly different. We can observe that issues resolved by

newcomers tend to contain longer descriptions, more hyperlinks,

and more code snippets. The statistics of reporters in Table 5 are

consistent with the features of reporters discussed in Section 4.4.1.

Besides, reporters are more involved in issue-related activities for

issues resolved by newcomers. At the project level, projects owned

by more experienced developers or companies may have more is-

sues resolved by newcomers. Projects with fewer stars, commits,

and more contributors tend to have more GFIs. In other words,

active projects in earlier development period may have more GFIs.

For issues resolved by newcomers, developers who label the

issues or change the status of the issues have richer development

experience. Therefore, we can make a reasonable inference that the

participation of veterans is helpful for newcomers to resolve issues.

We classify common labels into 12 categories in Section 3.1. Fol-

lowing conclusions can be drawn from Table 6: 1) Documentation

Table 5: Statistics of features from issues resolved by non-

newcomers and newcomers.

Mean Median
Features non-newcomer newcomer non-newcomer newcomer

Title and Description
len_body∗ 85.82 99.66 59 72
#urls∗ 1.04 1.13 1 1
#code_snips∗ 0.58 0.74 0 0

Labels
#labels∗ 1.54 1.78 1 2

Reporter
#pr_proj∗ 80.65 42.12 8 1
#pr_all∗ 212.67 134.72 61 19
#cmt_proj∗ 712.02 242.48 16 0
#cmt_all∗ 2,994.18 1,595.98 889 286
#issues_proj∗ 13.91 4.85 1 0
#issues_all∗ 460.45 235.71 122 34
nongfi/gfi∗ 60.45 6.42 6.97 0
#repo∗ 44.10 39.05 23 20
#stars_rptr∗ 357.82 608.76 7 4
#followers∗ 211.46 195.12 29 11
has_comment∗ 0.27 0.33 0 0
has_event∗ 0.28 0.32 0 0
rptr_is_new∗ 0.39 0.68 0 1

Project
#pr_proj_owner∗ 0.24 0.31 0 0
#pr_all_owner∗ 3.71 8.13 0 0
#cmt_proj_owner∗ 3.47 5.71 0 0
#cmt_all_owner∗ 136.21 311.40 0 0
#issues_proj_owner∗ 0.54 0.67 0 0
#issues_all_owner∗ 12.06 30.24 0 0
#repo_owner∗ 684.44 396.66 83 25
#stars_owner∗ 123,275.99 100,428.33 17,388 10,991
#iss_open∗ 7,145.98 6,546.67 4,317 3,971
#gfi_proj∗ 8.44 15.83 3 6
:gfi_proj∗ 0.08 0.24 0.02 0.20
#contributors∗ 395.53 450.05 229 265
#cmt∗ 18,187.59 14,307.51 12,237 8,210

Comments
#comments∗ 2.42 3.02 1 1

Events
#event_labeled∗ 4.96 5.56 2 3
#event_subscribed∗ 1.57 1.80 1 2
#event_referenced∗ 1.51 1.39 0 0

Participants
#pr_proj_labeler∗ 103.87 113.72 10 25
#pr_all_labeler∗ 400.84 578.57 61 93
#cmt_all_labeler∗ 4,148.89 4,119.72 688 910
#repo_labeler∗ 33.41 37.09 9 17
#stars_labeler∗ 398.87 914.05 1 3
#followers_labeler∗ 235.70 346.46 12 20
#gfi_labeler∗ 0.02 0.03 0 0
:gfi_labeler∗ 0.003 0.01 0 0
#labler_new∗ 0.18 0.26 0 0
:labler_new∗ 0.07 0.10 0 0
#pr_proj_evtr∗ 12.02 13.43 2.92 3.58
#pr_all_evtr∗ 35.93 49.40 8.41 10.77
#cmt_all_evtr∗ 417.38 450.05 112 124
#repo_evtr∗ 3.94 4.48 1.46 2.08
#stars_evtr∗ 59.81 137.72 0.65 1.15
#followers_evtr∗ 27.01 40.46 3.40 4.31
#event_new∗ 0.18 0.26 0 0
:event_new∗ 0.002 0.004 0 0

∗ 𝑝-value<0.00047.

tasks are more likely to be suitable for newcomers than Coding

tasks; 2)Medium Difficulty tasks are also likely to be suitable for

newcomers; 3) even if issues are tagged with GFI-Signaling labels,

only 21.23% of them are resolved by newcomers.11

Then, we compare the distribution of words in issue descriptions

from the two groups. To highlight difference while avoiding project

specific terms, we first filter out common stopwords and words

occurred in less than 5 projects. After filtering, we further plot two

11This ratio is lower than the 40.9% reported by Tan et al. [56] because they use 𝑘 = 2
as newcomer definition while we use 𝑘 = 0 in Table 6.

1837

Recommending Good First Issues in GitHub OSS Projects ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Number and proportion of issues with different la-

bels resolved by non-newcomers and newcomers.

Labels #issues resolver: non-newcomer resolver: newcomer

GFI-Signaling 6,482 5,106 (78.77%) 1,376 (21.23%)
Untriaged 680 544 (80.00%) 136 (20.00%)
Documentation 2,022 1,623 (80.27%) 399 (19.73%)
Medium Difficulty 1,056 856 (81.06%) 200 (18.94%)

All Issues 53,510 48,062 (89.82%) 5,448 (10.18%)

New Feature 2,195 1,974 (89.93%) 221 (10.07%)
Triaged 1,355 1,220 (90.04%) 135 (9.96%)
Test 1,551 1,398 (90.14%) 153 (9.86%)
Enhancement 3,186 2,878 (90.33%) 308 (9.67%)
Bug 13,809 12,489 (90.44%) 1,320 (9.56%)
Build 628 571 (90.92%) 57 (9.08%)
Coding 587 560 (95.40%) 27 (4.60%)
Difficult/Important 1,446 1,402 (96.96%) 44 (3.04%)

(a) Issues resolved by newcomers (b) Issues resolved by non-newcomers

Figure 7: The most frequent words in description of issues

resolved by newcomers and non-newcomers.

word clouds for remaining words using the following weighted

frequency formulas:

𝑤𝑒𝑖𝑔ℎ𝑡GFI (𝑤𝑜𝑟𝑑) =
𝑓 𝑟𝑒𝑞2

GFI
(𝑤𝑜𝑟𝑑)

𝑓 𝑟𝑒𝑞GFI (𝑤𝑜𝑟𝑑) + 𝑓 𝑟𝑒𝑞non-GFI (𝑤𝑜𝑟𝑑)

𝑤𝑒𝑖𝑔ℎ𝑡non-GFI (𝑤𝑜𝑟𝑑) =
𝑓 𝑟𝑒𝑞2

non-GFI
(𝑤𝑜𝑟𝑑)

𝑓 𝑟𝑒𝑞GFI (𝑤𝑜𝑟𝑑) + 𝑓 𝑟𝑒𝑞non-GFI (𝑤𝑜𝑟𝑑)

Here 𝑓 𝑟𝑒𝑞GFI (𝑤𝑜𝑟𝑑) and 𝑓 𝑟𝑒𝑞non-GFI (𝑤𝑜𝑟𝑑) means the frequency
of𝑤𝑜𝑟𝑑 in issues resolved by newcomers and non-newcomers, re-
spectively; and𝑤𝑒𝑖𝑔ℎ𝑡GFI (𝑤𝑜𝑟𝑑) and𝑤𝑒𝑖𝑔ℎ𝑡non-GFI (𝑤𝑜𝑟𝑑) means
the weight value assigned to𝑤𝑜𝑟𝑑 when plotting word clouds for
issues resolved by newcomers and non-newcomers, respectively.

The two word clouds are shown in Figure 7. For issues resolved

by newcomers, words related to small amount of work and fine-

grained details tend to be more common, while words related to

high difficulty and complex situations tend to be more common in

issues resolved by non-newcomers.

4.4.3 Observations of Quickly Resolved Issues. The reasons for is-

sues to be resolved quickly may be that they are easy or they are

resolved by veterans. We hypothesize that issues resolved in two

hours are easy and not complicated, thus they are very likely to

be suitable for newcomers. We choose a strict "short time" (two

hours) to ensure that issues are resolved quickly because of simplic-

ity, rather than veterans completing difficult tasks. Nevertheless,

it needs to be clear that some issues that are resolved within two

hours may not be suitable for newcomers. Table 7 provides statis-

tics of all issues and issues resolved within two hours (hereinafter

referred to as easy issues). As can be seen from Table 7, for issues

reported by newcomers, there is almost no difference in the propor-

tion of issues resolved by newcomers in easy issues and all issues.

For issues reported by non-newcomers, the proportion of easy is-

sues resolved by newcomers (1.15%) is lower than the overall ratio

(5.49%), since newcomers do not have enough time to find easy

issues. The other reason is that developers, especially those who

are experienced in projects, tend to resolve easy issues reported

by themselves compared with overall situation (33.64% to 61.05%).

While 61.05% of issues reported by non-newcomers are resolved

by themselves, the ratio is only 33.64% for issues reported by new-

comers. The reason may be that some newcomers are just project

users and do not plan to participate in development of project. In

addition, newcomers need longer time to resolve issues. Even if

they want to resolve issues reported by themselves, they may be

preempted by non-newcomers.

The above observations show a dilemma for newcomers. They

usually need more time to resolve an issue, but experienced devel-

opers have advantages because they can discover issues earlier and

resolve issues faster. This actually increases competition and diffi-

culty for newcomers to resolve GFIs. Therefore, it is important to

label GFIs early and correctly so that newcomers can locate suitable

issues more quickly and more accurately.

Table 7: Statistics of resolvers for all issues in the dataset and

issues resolved within two hours, respectively.

Reporter
Resolver

non-newcomer newcomer reporter #issues

(All issues)
Newcomer 20,005 (83.97%) 3,818 (16.03%) 2,085 (8.75%) 23,823
Non-newcomer 28,057 (94.51%) 1,630 (5.49%) 9,988 (33.64%) 29,687

(Issues resolved in 2h)
Newcomer 539 (83.31%) 108 (16.69%) 79 (12.21%) 647
Non-newcomer 1,713 (98.85%) 20 (1.15%) 1,058 (61.05%) 1,733

Summary for RQ2:

RecGFI predicts an issue as more likely to be a GFI if: 1) it is

reported by developers with “just enough” experience; 2) it

contains participation from experienced developers; and 3) the

project has an active owner and more onboarded newcomers.

4.5 RQ3: Real World Evaluation

To demonstrate that RecGFI works on real-world unseen data and

also useful under realistic scenarios, we run a script on August

23, 2021 to collect and compute features for open issues with re-

cent activities in the last seven days in the 100 projects. We get

3,130 issues after this step. Then, we use our trained RecGFI model

to predict whether these issues are possible GFIs, and we retain

511 issues with prediction probability higher than 0.7. We choose

the probability threshold of 0.7 because we do not want to bother

project maintainers with too many recommended issues and these

issues with higher possibilities are more likely to be real GFIs as

demonstrated in Figure 2. Project maintainers can choose an appro-

priate probability threshold according to the needs of their project.

A lower probability threshold means more potential false positives

and fewer GFIs omissions, while a higher probability threshold

ensure that recommended issues are more likely to be GFIs and

more GFIs may be missed.

1838

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou

Figure 8: The issue in Section 2.1 is labeled as a GFI by a

project maintainer after our recommendation.

Our first goal is to evaluate whether the recommended GFIs are

really perceived as GFIs by project maintainers. To achieve this

goal, we carefully check the 511 recommended issues by browsing

through issue titles, description, labels, comments, and timeline

events. We also check project contribution documentation to under-

stand their issue workflow where necessary. As expected, a large

number of open issues are not in a suitable state for recommen-

dation: 70 issues still need further information or discussion to

be confirmed as a real issue; 115 issues are already being solved

by a specific developer; 25 issues do not correspond to a specific

development task (i.e., they may be discussions, proposals, etc);

finally, 9 issues are closed between script execution and manual

inspection. Fortunately, we observe that most projects have custom

labels to specify issue states (e.g., “Needs Triage”, “In Discussion”,

“In Progress”, etc) and better recommendation can be facilitated by

customizing RecGFI to work on a subset of open issues (e.g., by

specifying filtering rules on issue labels).

In the remaining 216 issues, 67 (31.0%) already have GFI-signaling

labels while 28 (13.0%) have some evidence indicating they are

not suitable for newcomers (e.g., difficult, complex, etc). For the

remaining 121 issues, we group them by project and report them

to project maintainers in the following way: if a project has more

than three recommended issues, we open a new issue/discussion

in the project to report up to 10 issues as possible GFIs; if the

project contribution guideline does not allow opening such issues,

we directly comment on up to three issues to suggest adding GFI-

signaling labels. We limit the number of issues reported to avoid

being perceived as spamming or causing too much workload for

project maintainers, and we report 60 issues after this procedure.

At the time of writing, we have received response for 33 reported

issues. 16 issues are confirmed as GFIs (see an example in Figure 8)

and project maintainers add GFI-signaling labels for these issues,

while 17 issues are not considered as GFIs by project maintainers.

In other words, our model reaches an estimated precision of (16 +

67)/(16+ 17+ 67+ 28) = 64.84% in the real world setting. Although

our recommendations still contain false positives (as perceived by

the project maintainers), we receive positive responses from the

maintainers about our approach:

(1) Marking more issues as GFI does have the potential of making

projects more accessible to new contributors, so I’m intrigued!12

(2) Thanks for suggesting those. I have gone ahead and added the

tag to 3 of the 5. One that I didn’t already is a work in progress,

the other is a deployment issue. Closing this issue as the tag has

been added. Thanks!13

12https://github.com/facebook/jest/issues/11777
13https://github.com/dotnet/machinelearning/issues/5908

(3) Thank you. I labelled these but the rest aren’t easy: #4456 #4531

#4700.14

Our second goal is to evaluate to what extent are the recom-

mended GFIs actually resolved by newcomers at the time of writing

(January 4, 2022). For the 16 issues recommended by us and con-

firmed later by project maintainers, three issues15,16,17 (among five

resolved) are resolved by a newcomer. One issue18 has attracted a

newcomer but is later resolved by a non-newcomer. Interestingly,

for the 17 issues denied by project maintainers, two issues19,20

(among eight resolved) are also resolved by newcomers, both with

only several lines of changes. The two issues offer preliminary

evidence that project maintainers may not always be correct in

labeling GFIs and an automated recommendation approach adds

up more value in helping newcomers onboard.

Summary for RQ3:

RecGFI is helpful in real world scenarios. We report the recom-

mend issues to project maintainers in which 16 are confirmed

as GFIs and five have already been resolved by a newcomer.

5 DISCUSSION

Identifying Issues Suitable for Newcomers. Ideally, RecGFI

should be able to clearly distinguish between issues suitable / inap-

propriate for newcomers. Because such ideal ground truth labels are

not available, RecGFI is trained from different labels (whether an

issue is resolved by a newcomer), which comes with a number of ad-

vantages and limitations. First, it works on any project with at least

some onboard newcomers even if the project maintainers do not

add any GFI-signaling labels to issues. However, although we show

that issues resolved by newcomers are less scarce (10.18%-16.26% in

Table 1) than issues with GFI-signaling labels (1.93%), it is also pos-

sible that issues resolved by non-newcomers are actually suitable

for newcomers because it can be hard for newcomers to discover

these issues. Such cases can be mitigated if RecGFI is deployed in

practice and continuously recommending GFIs to newcomers in

a project. We also do not consider the expertise or preference of

newcomers during recommendation and we plan to explore the

possibility of personalized GFI recommendation in future work.

Filtering of “Not Task” Issues.As demonstrated in Section 4.5,

the efficiency of RecGFI is hindered by the fact that a significant

portion of issues on GitHub does not correspond to a specific de-

velopment task [28]. Although this limitation can be mitigated for

projects that manage issues with well-defined labels, it may make

RecGFI less useful in other projects. Future work can design an

approach that automatically learns and filters “not task” issues to

make GFI recommendation more effective.

The Threshold 𝑘 . The threshold used to define newcomers is a
parameter that can be flexibly adjusted. If project maintainers tend

to define newcomers more strictly, 𝑘 = 0 is a reasonable choice.

14https://github.com/sindresorhus/refined-github/issues/4708
15https://github.com/freeCodeCamp/freeCodeCamp/issues/43264
16https://github.com/facebook/jest/issues/11770
17https://github.com/dotnet/machinelearning/issues/5899
18https://github.com/sindresorhus/refined-github/issues/4700
19https://github.com/sindresorhus/refined-github/issues/4697
20https://github.com/facebook/jest/issues/11767

1839

Recommending Good First Issues in GitHub OSS Projects ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Otherwise, previous work [56] has shown that the distribution

of commits are often sparse between newcomers and long-term

contributors, so a 𝑘 value can also be chosen near this boundary,
which should be 𝑘 = 2 or 𝑘 = 3 for most projects.

Expertise and Experience in the Newcomer Definition. In

this work, we only consider the number of commits for the concept

of newcomers and ignores other forms of experiences (e.g., code

review, issue reporting, commenting, etc.) because other experi-

ences are either not indicative of expertise in contributing code

(e.g., issue reporting, commenting), or are only possible when one

already becomes a veteran (e.g., code review). According to Baltes

and Diehl [6], knowledge, experience, and skills constitute one’s

expertise in a project. However, it is non-trivial to infer knowledge

and skills from data (which is important for personalized recom-

mendation), so we leave them for future work.

Learning from Issue Text. In RecGFI, we model issue text

using readability, keyword frequency, text length, number of im-

ages, number of code snippets and number of hyperlinks. Domain-

specific information in issue descriptions may be helpful for recog-

nizing GFIs, but we find that straightforward deep neural networks

(e.g., LSTM [22]) fail to capture such semantics and cannot outper-

form our current approach. Therefore, future work can be devoted

to approaches that better capture issue semantics.

Generalizability to Other Projects. Theoretically, RecGFI can

work on any GitHub project. However, to ensure the quality of

our dataset, our evaluation is based solely on projects with many

manually labeled GFIs and high popularity. Future work is needed

to investigate to what extent can RecGFI perform on projects with

different characteristics. If a project lacks historical data (e.g., few

onboarded newcomers and few issues), RecGFI may perform less

well and its transferability to other projects should also be studied

in future work.

6 RELATEDWORK
Keeping a good influx of new developers is critical for the survival,

long-term success, and continuity of OSS projects [21]. Substan-

tial efforts have been devoted to understanding contributors’ mo-

tivation, newcomers’ barriers, exploring associated factors, and

identifying strategies to get people onboard.

Hars et. al [21] identifies two broad types of motivations: inter-

nal factors (e.g., intrinsic motivation and altruism) and external

rewards (e.g., expected future returns and personal needs). Ye et.

al [62] theorize that learning is one of the motivational forces. Von

Krogh et al. [30] conclude in a review that developers are moti-

vated by intrinsic, internalized extrinsic, and extrinsic motivations.

Krishnamurthy et al. [29] investigate the motivation of peripheral

developers and find that the recognition from project stakeholders

promotes the participation of peripheral developers.

Newcomers face many barriers when they participate in OSS

projects, including both technical (e.g., domain knowledge and

programming skills [32, 46]) and non-technical factors (e.g., com-

munication [55]). In a qualitative study, Shibuya et al. [46] find that

newcomers usually have difficulties in task selection due to lack of

documentation, constraints in contributor license agreement, no

technical support, etc. Steinmacher et al. [49] divide 58 difficulties

into six groups, e.g., newcomers’ characteristics and technical hur-

dles. Mendez et al. [36] take a new perspective of barriers from

tools and infrastructure and find that the barriers are implicated in

all six categories of previously established newcomer barrier types.

In view of these barriers, many researchers explore methods and

strategies to help newcomers. Zhou [64] calls for research into OSS

project communication, modularization, task division, and learning

of experts to help newcomer onboarding. Jensen et al. [27] find

that timely responses to mails of newcomers can promote them

onboard. Zhou et al. [65] find that peers’ attention and productivity

help newcomers to sustain. Steinmacher et al. [52] propose tech-

nical, contribution process, and social behavior guidelines to help

newcomers. Considering newcomers’ difficulty in finding appropri-

ate tasks [46], many OSS communities try to label issues suitable

for newcomers, which inspires researchers’ investigations. Stein-

macher et al. [50] present a set of strategies identified in literature,

interviews, and state-of-the-practice to help newcomers choose

suitable task. Tan et al. [56] conduct a first study on the GFI mecha-

nism and find that maintainers usually feel difficult when labelling

GFIs and the rationality of the current GFIs is questionable. Alderli-

esten and Zaidman [1] discover mismatch between GFIs and actual

newcomer contributions. Balali et al. [5] identify 7 challenges for

maintainers when recommending tasks to newcomers. Horiguchi

et al. [23] find that GFIs attract newcomers but are ineffective at re-

taining them. Existing methods for task selection/recommendation

mostly suggest tasks to developers with previous interactions in the

project (e.g., Anvik and Murphy [2]). Wang and Sarma [60] develop

a tool to help newcomer explore bug reports but their tool is not ca-

pable of automated recommendation. In this paper, we fill this gap

by proposing a machine learning approach specifically designed for

GFI recommendation, which can help relieve maintainers’ burden

and get newcomers onboard. Recently, a parallel work from Huang

et al. [25] propose an automatic approach to characterize and pre-

dict GFIs. Our work has several notable differences compared with

theirs. First, their approach predicts whether an issue has a GFI

label while ours predicts whether an issue will be resolved by a

newcomer. Our setup can avoid bias introduced by manual labeling

and also works for projects with scarce or no GFI labels. Second,

we use the event stream provided by GHTorrent [19] to restore his-

torical issue states. Finally, we build a larger dataset for evaluation,

with 10x more projects and two different time points.

7 CONCLUSION

In this paper, we have presented RecGFI, a machine learning ap-

proach based on extensive feature engineering and an XGBoost

classifier for real GFI recommendation scenarios. We show through

experiments that RecGFI achieves high performance, outperforms

other alternative methods, and reveals interesting observations on

GFI characteristics. We also conduct a field evaluation to prove that

RecGFI is able to help project maintainers label GFIs and attract

newcomers onboard. In the future, we plan to explore ways to de-

ploy RecGFI (e.g., via GitHub Bots or Plugins) and derive improved

approaches for personalized GFI recommendation.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of China Grant

2018YFB1004201 and the National Natural Science Foundation of China

Grant 61825201.We sincerely thank the OSS developers who have responded

to our issues and the anonymous reviewers for their constructive feedback.

1840

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou

REFERENCES
[1] Jan Willem David Alderliesten and Andy Zaidman. 2021. An Initial Exploration

of the "Good First Issue" Label for Newcomer Developers. In 14th IEEE/ACM
InternationalWorkshop on Cooperative and HumanAspects of Software Engineering,
CHASE@ICSE 2021, Madrid, Spain, May 20-21, 2021. IEEE, 117–118. https://doi.
org/10.1109/CHASE52884.2021.00023

[2] John Anvik and Gail C. Murphy. 2011. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. ACM Trans. Softw. Eng.
Methodol. 20, 3 (2011), 10:1–10:35. https://doi.org/10.1145/2000791.2000794

[3] DeekshaM. Arya,WentingWang, Jin L. C. Guo, and Jinghui Cheng. 2019. Analysis
and detection of information types of open source software issue discussions. In
Proceedings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle (Eds.). IEEE / ACM, 454–464. https://doi.org/10.1109/ICSE.2019.00058

[4] Sikha Bagui and Kunqi Li. 2021. Resampling imbalanced data for network intru-
sion detection datasets. J. Big Data 8, 1 (2021), 6. https://doi.org/10.1186/s40537-
020-00390-x

[5] Sogol Balali, Umayal Annamalai, Hema Susmita Padala, Bianca Trinkenreich,
Marco A. Gerosa, Igor Steinmacher, and Anita Sarma. 2020. Recommending
Tasks to Newcomers in OSS Projects: How Do Mentors Handle It?. In Proceedings
of the 16th International Symposium on Open Collaboration (Virtual conference,
Spain) (OpenSym 2020). Association for Computing Machinery, New York, NY,
USA, Article 7, 14 pages. https://doi.org/10.1145/3412569.3412571

[6] Sebastian Baltes and Stephan Diehl. 2018. Towards a theory of software devel-
opment expertise. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM,
187–200. https://doi.org/10.1145/3236024.3236061

[7] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What makes a good bug report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2008, Atlanta, Georgia, USA, November 9-14, 2008, Mary Jean Harrold
and Gail C. Murphy (Eds.). ACM, 308–318. https://doi.org/10.1145/1453101.
1453146

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 785–794. https://doi.org/10.1145/
2939672.2939785

[9] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. ACM, 186–
196. https://doi.org/10.1145/3106237.3106246

[10] Sanjay Kumar Dubey, Ajay Rana, and Yajnaseni Dash. 2012. Maintainability
prediction of object-oriented software system by multilayer perceptron model.
ACM SIGSOFT Softw. Eng. Notes 37, 5 (2012), 1–4. https://doi.org/10.1145/2347696.
2347703

[11] Olive Jean Dunn. 1961. Multiple comparisons among means. J. Amer. Statist.
Assoc. 56, 293 (1961), 52–64. https://doi.org/10.1080/01621459.1961.10482090

[12] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E. Hassan. 2020. Chaff from the
Wheat: Characterizing and Determining Valid Bug Reports. IEEE Trans. Software
Eng. 46, 5 (2020), 495–525. https://doi.org/10.1109/TSE.2018.2864217

[13] GitHub, Inc. 2021. Autolinked references and URLs. Retrieved August 27,
2021 from https://docs.github.com/en/github/writing-on-github/working-with-
advanced-formatting/autolinked-references-and-urls

[14] GitHub, Inc. 2021. Encouraging helpful contributions to your project with labels. Re-
trieved June 17, 2021 from https://docs.github.com/en/communities/setting-up-
your-project-for-healthy-contributions/encouraging-helpful-contributions-to-
your-project-with-labels

[15] GitHub, Inc. 2021. GitHub REST API. Retrieved August 23, 2021 from https:
//docs.github.com/en/rest

[16] GitHub, Inc. 2021. Issue event types. Retrieved August 27, 2021 from https://docs.
github.com/en/developers/webhooks-and-events/events/issue-event-types

[17] GitHub, Inc. 2021. Linking a pull request to an issue. Retrieved August 27,
2021 from https://docs.github.com/en/issues/tracking-your-work-with-issues/
linking-a-pull-request-to-an-issue

[18] GitHub, Inc. 2021. Setting up your project for healthy contributions. Retrieved
June 17, 2021 from https://docs.github.com/en/communities/setting-up-your-
project-for-healthy-contributions

[19] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE, 233–236.

[20] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982),
29–36.

[21] A. Hars and Shaosong Ou. 2001. Working for free? Motivations of participating
in open source projects. In Proceedings of the 34th Annual Hawaii International
Conference on System Sciences. 9 pp.–. https://doi.org/10.1109/HICSS.2001.927045

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[23] Hyuga Horiguchi, Itsuki Omori, and Masao Ohira. 2021. Onboarding to Open
Source Projects with Good First Issues: A Preliminary Analysis. In 28th IEEE
International Conference on Software Analysis, Evolution and Reengineering, SANER
2021, Honolulu, HI, USA, March 9-12, 2021. IEEE, 501–505. https://doi.org/10.1109/
SANER50967.2021.00054

[24] Yonghui Huang, Daniel Alencar da Costa, Feng Zhang, and Ying Zou. 2019.
An empirical study on the issue reports with questions raised during the issue
resolving process. Empir. Softw. Eng. 24, 2 (2019), 718–750. https://doi.org/10.
1007/s10664-018-9636-3

[25] Yuekai Huang, Junjie Wang, Song Wang, Zhe Liu, Dandan Wang, and Qing
Wang. 2021. Characterizing and Predicting Good First Issues. In ESEM ’21:
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Bari, Italy, October 11-15, 2021, Filippo Lanubile, Marcos Kalinowski,
and Maria Teresa Baldassarre (Eds.). ACM, 13:1–13:12. https://doi.org/10.1145/
3475716.3475789

[26] Javier Luis Cánovas Izquierdo, Valerio Cosentino, Belen Rolandi, Alexandre
Bergel, and Jordi Cabot. 2015. GiLA: GitHub label analyzer. In 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2015, Montreal, QC, Canada, March 2-6, 2015, Yann-Gaël Guéhéneuc,
Bram Adams, and Alexander Serebrenik (Eds.). IEEE Computer Society, 479–483.
https://doi.org/10.1109/SANER.2015.7081860

[27] Carlos Jensen, Scott King, and Victor Kuechler. 2011. Joining Free/Open Source
Software Communities: An Analysis of Newbies’ First Interactions on Project
Mailing Lists. In 44th Hawaii International International Conference on Systems
Science (HICSS-44 2011), Proceedings, 4-7 January 2011, Koloa, Kauai, HI, USA.
IEEE Computer Society, 1–10. https://doi.org/10.1109/HICSS.2011.264

[28] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella.
2019. Ticket Tagger: Machine Learning Driven Issue Classification. In 2019
IEEE International Conference on Software Maintenance and Evolution, ICSME
2019, Cleveland, OH, USA, September 29 - October 4, 2019. IEEE, 406–409. https:
//doi.org/10.1109/ICSME.2019.00070

[29] Rajiv Krishnamurthy, Varghese Jacob, Suresh Radhakrishnan, and Kutsal Dogan.
2016. Peripheral Developer Participation in Open Source Projects: An Empirical
Analysis. ACM Trans. Manage. Inf. Syst. 6, 4, Article 14 (Jan. 2016), 31 pages.
https://doi.org/10.1145/2820618

[30] Georg Krogh, Stefan Haefliger, Sebastian Spaeth, andMartinWallin. 2012. Carrots
and Rainbows: Motivation and Social Practice in Open Source Software Develop-
ment. MIS Quarterly forthcoming (06 2012). https://doi.org/10.2307/41703471

[31] Karim R Lakhani and Robert G Wolf. 2003. Why hackers do what they do:
Understanding motivation and effort in free/open source software projects. Open
Source Software Projects (September 2003) (2003). https://dx.doi.org/10.2139/ssrn.
443040

[32] Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu. 2017. Understanding the
impressions, motivations, and barriers of one time code contributors to FLOSS
projects: a survey. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE / ACM,
187–197. https://doi.org/10.1109/ICSE.2017.25

[33] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The Annals of
Mathematical Statistics (1947), 50–60. https://doi.org/10.1214/aoms/1177730491

[34] Lionel Marks, Ying Zou, and Ahmed E. Hassan. 2011. Studying the fix-time
for bugs in large open source projects. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, PROMISE 2011, Banff,
Alberta, Canada, September 20-21, 2011, Tim Menzies (Ed.). ACM, 11. https:
//doi.org/10.1145/2020390.2020401

[35] Francisco Melo. 2013. Area under the ROC Curve. Springer New York, New York,
NY, 38–39. https://doi.org/10.1007/978-1-4419-9863-7_209

[36] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilde-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. 2018. Open Source Barriers to Entry, Revisited: A So-
ciotechnical Perspective. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). 1004–1015. https://doi.org/10.1145/3180155.3180241

[37] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two case studies
of open source software development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol. 11, 3 (2002), 309–346. https://doi.org/10.1145/567793.567795

[38] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empir. Softw. Eng. 22, 6 (2017),
3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[39] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-
learn: Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

1841

Recommending Good First Issues in GitHub OSS Projects ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

http://dl.acm.org/citation.cfm?id=2078195
[40] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &

Policy 12, 3 (1999), 23–49.
[41] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I

Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016, Balaji Krishnapuram, Mohak
Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi
(Eds.). ACM, 1135–1144. https://doi.org/10.1145/2939672.2939778

[42] S. Abijah Roseline and S. Geetha. 2018. Intelligent Malware Detection using
Oblique Random Forest Paradigm. In 2018 International Conference on Advances
in Computing, Communications and Informatics, ICACCI 2018, Bangalore, India,
September 19-22, 2018. IEEE, 330–336. https://doi.org/10.1109/ICACCI.2018.
8554903

[43] Hang Ruan, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2019. DeepLink: Re-
covering issue-commit links based on deep learning. J. Syst. Softw. 158 (2019).
https://doi.org/10.1016/j.jss.2019.110406

[44] Gerard Salton and Chris Buckley. 1988. Term-Weighting Approaches in Automatic
Text Retrieval. Inf. Process. Manag. 24, 5 (1988), 513–523. https://doi.org/10.1016/
0306-4573(88)90021-0

[45] Benedikt Schifferer, Chris Deotte, and Even Oldridge. 2020. Tutorial: Feature
Engineering for Recommender Systems. In RecSys 2020: Fourteenth ACM Con-
ference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020,
Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen,
Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 754–755.
https://doi.org/10.1145/3383313.3411543

[46] Bianca Shibuya and Tetsuo Tamai. 2009. Understanding the process of par-
ticipating in open source communities. In 2009 ICSE Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development. IEEE, 1–6.
https://doi.org/10.1109/FLOSS.2009.5071352

[47] Dmitry Smolyakov, Alexander Korotin, Pavel Erofeev, Artem Papanov, and
Evgeny Burnaev. 2018. Meta-learning for resampling recommendation sys-
tems. In Eleventh International Conference on Machine Vision, ICMV 2018, Munich,
Germany, 1-3 November 2018 (SPIE Proceedings, Vol. 11041), Antanas Verikas,
Dmitry P. Nikolaev, Petia Radeva, and Jianhong Zhou (Eds.). SPIE, 110411S.
https://doi.org/10.1117/12.2523103

[48] Christoph Stanik, Lloyd Montgomery, Daniel Martens, Davide Fucci, and Walid
Maalej. 2018. A Simple NLP-Based Approach to Support Onboarding and Re-
tention in Open Source Communities. In 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29,
2018. IEEE Computer Society, 172–182. https://doi.org/10.1109/ICSME.2018.00027

[49] Igor Steinmacher, Ana Paula Chaves, Tayana Uchôa Conte, and Marco Aurélio
Gerosa. 2014. Preliminary Empirical Identification of Barriers Faced by Newcom-
ers to Open Source Software Projects. In 2014 Brazilian Symposium on Software
Engineering, Maceió, Brazil, September 28 - October 3, 2014. IEEE Computer Society,
51–60. https://doi.org/10.1109/SBES.2014.9

[50] Igor Steinmacher, Tayana Uchôa Conte, and Marco Aurélio Gerosa. 2015. Un-
derstanding and Supporting the Choice of an Appropriate Task to Start with in
Open Source Software Communities. In 48th Hawaii International Conference
on System Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5-8, 2015. IEEE
Computer Society, 5299–5308. https://doi.org/10.1109/HICSS.2015.624

[51] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
2018. Almost There: A Study on Quasi-Contributors in Open-Source Software
Projects. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 256–266. https://doi.org/10.1145/3180155.3180208

[52] Igor Steinmacher, Christoph Treude, and Marco Aurélio Gerosa. 2019. Let Me In:
Guidelines for the Successful Onboarding of Newcomers to Open Source Projects.
IEEE Softw. 36, 4 (2019), 41–49. https://doi.org/10.1109/MS.2018.110162131

[53] Mervyn Stone. 1974. Cross-validatory choice and assessment of statistical pre-
dictions. Journal of the Royal Statistical Society: Series B (Methodological) 36, 2
(1974), 111–133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

[54] Margaret-Anne D. Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng,
and Michael J. Muller. 2009. How Software Developers Use Tagging to Support
Reminding and Refinding. IEEE Trans. Software Eng. 35, 4 (2009), 470–483. https:
//doi.org/10.1109/TSE.2009.15

[55] Xin Tan and Minghui Zhou. 2019. How to Communicate when Submitting
Patches: An Empirical Study of the Linux Kernel. Proc. ACM Hum. Comput.
Interact. 3, CSCW (2019), 108:1–108:26. https://doi.org/10.1145/3359210

[56] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues
on GitHub. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020. ACM, 398–409. https://doi.org/10.1145/3368089.
3409746

[57] Feifei Tu, Jiaxin Zhu, Qimu Zheng, and Minghui Zhou. 2018. Be careful of when:
an empirical study on time-related misuse of issue tracking data. In Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro

Garcia, and Corina S. Pasareanu (Eds.). ACM, 307–318. https://doi.org/10.1145/
3236024.3236054

[58] Marat Valiev, Bogdan Vasilescu, and James D. Herbsleb. 2018. Ecosystem-level de-
terminants of sustained activity in open-source projects: a case study of the PyPI
ecosystem. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018.
ACM, 644–655. https://doi.org/10.1145/3236024.3236062

[59] Lev Vygotsky. 1978. Interaction between learning and development. Readings on
the development of children 23, 3 (1978), 34–41.

[60] Jianguo Wang and Anita Sarma. 2011. Which bug should I fix: helping new
developers onboard a new project. In Proceedings of the 4th InternationalWorkshop
on Cooperative and Human Aspects of Software Engineering, CHASE 2011, Waikiki,
Honolulu, HI, USA, May 21, 2011, Marcelo Cataldo, Cleidson R. B. de Souza,
Yvonne Dittrich, Rashina Hoda, and Helen Sharp (Eds.). ACM, 76–79. https:
//doi.org/10.1145/1984642.1984661

[61] Mohamad Yazdaninia, David Lo, and Ashkan Sami. 2021. Characterization and
Prediction of Questions without Accepted Answers on Stack Overflow. In 29th
IEEE/ACM International Conference on ProgramComprehension, ICPC 2021, Madrid,
Spain, May 20-21, 2021. IEEE, 59–70. https://doi.org/10.1109/ICPC52881.2021.
00015

[62] Yunwen Ye and Kouichi Kishida. 2003. Toward an Understanding of the Motiva-
tion Open Source Software Developers. In Proceedings of the 25th International
Conference on Software Engineering (Portland, Oregon) (ICSE ’03). IEEE Computer
Society, USA, 419–429.

[63] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong Wu,
Fang Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei.
2020. Real-time incident prediction for online service systems. In ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 315–326.
https://doi.org/10.1145/3368089.3409672

[64] Minghui Zhou. 2019. Onboarding and Retaining of Contributors in FLOSS Ecosys-
tem. Springer Singapore, Singapore, 107–117. https://doi.org/10.1007/978-981-
13-7099-1_7

[65] Minghui Zhou and Audris Mockus. 2012. What make long term contributors:
Willingness and opportunity in OSS community. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. IEEE
Computer Society, 518–528. https://doi.org/10.1109/ICSE.2012.6227164

[66] Minghui Zhou and Audris Mockus. 2015. Who Will Stay in the FLOSS Commu-
nity? Modeling Participant’s Initial Behavior. IEEE Trans. Software Eng. 41, 1
(2015), 82–99. https://doi.org/10.1109/TSE.2014.2349496

[67] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016.
Inflow and Retention in OSS Communities with Commercial Involvement: A
Case Study of Three Hybrid Projects. ACM Trans. Softw. Eng. Methodol. 25, 2
(2016), 13:1–13:29. https://doi.org/10.1145/2876443

1842

