
Revisiting the Conflict-Resolving Problem from a Semantic
Perspective

Jinhao Dong
∗

Key Laboratory of High Confidence

Software Technologies (Peking

University), MoE

School of Computer Science,

Peking University

Beijing, China

dongjinhao@stu.pku.edu.cn

Jun Sun

School of Computing and Information

Systems,

Singapore Management University

Singapore

junsun@smu.edu.sg

Yun Lin

Department of Computer Science and

Engineering,

Shanghai Jiao Tong University

Shanghai, China

lin_yun@sjtu.edu.cn

Yedi Zhang, Murong Ma

School of Computing,

National University of Singapore

Singapore

yd.zhang@nus.edu.sg

murongma@u.nus.edu

Jin Song Dong

School of Computing,

National University of Singapore

Singapore

dcsdjs@nus.edu.sg

Dan Hao
†

School of Electronic and Computer

Engineering,

Peking University

Shenzhen, China

haodan@pku.edu.cn

ABSTRACT
Collaborative software development significantly enhances devel-

opment productivity by enabling multiple contributors to work

concurrently on different branches. Despite these advantages, such

collaboration often increases the likelihood of causing conflicts.

Resolving these conflicts brings huge challenges, primarily due to

the necessity of comprehending the differences between conflict-

ing versions. Researchers have explored various automatic con-

flict resolution techniques, including unstructured, structured, and

learning-based approaches. However, these techniques are mostly

heuristic-based or black-box in nature, which means they do not

attempt to solve the root cause of the conflicts, i.e., the existence of

different program behaviors exhibited by the conflicting versions.

In this work, we propose sMerge, a novel conflict resolution

approach based on the semantics of program behaviors. We first

give the formal definition of the merge conflict problem as well

as the specific conditions under which conflicts happen and the

criteria employed to select certain version as the resolution. Based

on the definition, we propose to resolve the conflicts from the

perspective of program behaviors. In particular, we argue that the

key to resolving conflicts is identifying different program behaviors,

and thus can be solved through targeted test generation.We conduct

an extensive evaluation of sMerge using a comprehensive dataset

∗
This work was done when Jinhao Dong was a visiting student in National University

of Singapore (NUS) and Singapore Management University (SMU).

†
Dan Hao is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3694993

of conflicts sourced from various projects. Our results show that

sMerge can effectively solve the merge problem by employing

different test generation techniques, including search-based, GPT-

based, and manual testing. We remark that sMerge provides a way
to understand the program behavior differences through testing,

which not only allows us to solve the merge problem soundly but

also enables the detection of incorrect ground truths provided by

developers, thereby enhancing the reliability of the merge process.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development.

KEYWORDS
Behavior-Based Conflict Resolving, Targeted Test Generation

ACM Reference Format:
Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong,

and DanHao. 2024. Revisiting the Conflict-Resolving Problem from a Seman-

tic Perspective. In 39th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3691620.

3694993

1 INTRODUCTION
As software systems grow increasingly complex, collaboration

among developers has become essential for project completion, a

practice called collaborative software development. Typically, multi-

ple developers concurrently work on separate branches forked from

the main repository, each working on respective tasks. Upon com-

pletion, developers submit pull requests to merge their branches

into the main branch [18]. Although collaboration development en-

hances efficiency, they also introduce challenges, notably the merge

problem—resolving conflicts between different branches. Conflicts

will arise when two developers modify the same parts of code. It

has been reported that 12% of the commits are aimed at merging

https://doi.org/10.1145/3691620.3694993
https://doi.org/10.1145/3691620.3694993
https://doi.org/10.1145/3691620.3694993

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong, and Dan Hao

code from different developers [18], and approximately 46% of these

merges result in conflicts, highlighting the significant frequency of

such issues in collaborative software development. Resolving these

conflicts is a great challenge as it requires developers to understand

the intentions behind each conflict version, which involves a metic-

ulous examination of the code implementations and identification

of the differences between the conflicting versions [7, 8, 11, 20, 28].

To alleviate the substantial efforts required to resolve conflicts,

researchers have proposed various automatic techniques [5, 8, 10,

23, 25, 26]. Given the common ancestor O and the conflicting ver-

sions A and B produced by different developers, the goal of auto-

matic conflict resolving techniques is to produce a resolved version

M from these discrepancies. Existing techniques can be divided

into three main categories: unstructured techniques [1, 19], struc-

tured techniques [5, 8, 10, 23, 25, 26, 34, 40], and learning-based

techniques [12, 35]. Unstructured techniques, primarily text-based,

are commonly utilized in version control systems (VCS). However,

these methods are limited in resolving capabilities, typically report-

ing conflicts rather than resolving them when modifications occur

at identical text locations. Structured techniques merge code based

on abstract syntax tree (AST) matching and amalgamation. These

techniques leverage structural information of specific programming

languages (e.g., methods can be permuted safely in Java), which

often leads to a higher merging rate compared to the unstructured

methods. However, structured techniques are typically designed

for particular languages and involve operations at the tree level,

which causes a high computational complexity (at least cubic [25]).

Learning-based techniques, currently achieves the SOTA perfor-

mance, which employs deep learning models to produce the resolu-

tion strategies [35] or generate the resolution code directly [12, 13].

While various techniques have been proposed to resolve merge

conflicts, they share a common limitation. The perspectives from
which existing techniques resolve conflicts are not from the root cause.
Fundamentally, a conflict arises when there are conflicting program

behaviors. The program behaviors reveal the performance and ef-

fects of the software, which indicates the fundamental requirements

from the developers. Thus, the key to resolving conflicts is identi-

fying and understanding divergent program behaviors, and other

perspectives will unavoidably compromise the accuracy of conflict

resolution. Unstructured techniques, which resolve conflicts from a

textual perspective [1], are simple and possess good generalization

but suffer from low accuracy. Structured techniques, addressing

conflicts based on syntax and structure [5, 8], offer higher accu-

racy than text-based methods by considering syntax. However, the

static analysis has high computation complexity for object-oriented

language (e.g., Java), which has complex data structures and long

method call chains. Furthermore, they fall short of ensuring cor-

rectness when the conflicts are concerned with behavioral aspects.

For example, if version A adds the line x = y * 2 and version

B inserts x = y « 1 at the same location, both text-based and

syntax-based techniques would flag this as a conflict, despite both

versions being semantically equivalent implementations following

the same specification. Structured-based techniques will also cause

false positives [6], and the Java-targeted tool JDime [3] achieves a

precision of only 26.3%. Learning-based methods, while innovative,

also present limitations. These methods do not establish which

version is preferable, nor do they set a specific optimization goal.

Rather, they just learn strategies from historical data which usually

leads to overfitting. Moreover, these techniques lack transparency

in their decision-making processes, making it challenging to un-

derstand or justify the choices they make. Hence, we argue that

understanding the conflicting behaviors is crucial for identifying

the conflicts and the goal of resolution process should be: i) precisely

identifying the conflicting program behaviors and ii) resolving the

conflict based on the expected or desired program behavior.

In this work, we propose a novel merge technique from the per-

spective of program behaviors, i.e., sMerge. Firstly, we formally
define the merge problem, the condition under which conflicts happen,
and the criteria for selecting certain version as the resolution. Such
formal definitions are crucial because they provide a solid founda-

tion for justifying the choices made in resolving conflicts. Secondly,
we propose to resolve the conflicts by focusing on the differences in
program behaviors, utilizing targeted test generation. We identify the

program behavior differences between two conflicting versions by

executing them on both versions’ tests. By analyzing the differences

and relationships between their behaviors, we can strategically re-

solve the conflicts, and we categorize these into six different cases,

including both unmergeable and mergeable scenarios. For example,

one specific case is selecting the version whose behaviors subsume

those of the other version as the resolution.

To effectively identify the behavioral differences between two

versions, sMerge requires a comprehensive set of test cases for

each version. Testing is an intuitive and accurate way to observe

the program behaviors, and it is challenging for other ways (e.g.,

static analysis) to identify the behavioral differences. Therefore,

the merge problem is reduced to a test generation problem. We

employ various test generation techniques to depict the behaviors

of the conflicting versions, including search-based test generation,

GPT-based test generation, and manual testing. Specifically, we

introduce an automatic behavioral-differences-identifying test gen-

eration technique based on GPT-4. This technique consists of two

components and utilizes an iterative refinement process to enhance

the tests’ ability to pinpoint behavioral differences. Upon obtaining

the test suite, we can further obtain the behavioral differences by

validating each conflicting version against the tests of both versions,

and then resolve the conflicts based on the behavioral differences.

The general idea here is that the resolution needs to subsume the

newly-introduced behaviors of both versions. Intuitively, we will

choose the version whose passed tests cover the tests passed by the

other version, meaning that the behaviors of one version subsume

those of the other. For the scenario where neither A nor B can

pass all the tests of the other, indicating no version is definitively

superior, we will concatenate them or report a conflict based on

whether their tests are conflicting. Executing tests is one stage of

software development, so sMergewill not bring extra burden to the

developers. By contrast, structured techniques and learning-based

techniques will bring huge extra cost. In addition, sMerge does

not need any language-specific or project-specific information, but

structured techniques are language-specific.

We conduct a comprehensive evaluation of sMerge. We evaluate

our technique on two popular datasets in the research community.

Since sMerge solves the merge problem based on test cases that

identify the behavior differences, we evaluate its performance with

different set of test cases, and show themore sufficient the test cases,

Revisiting the Conflict-Resolving Problem from a Semantic Perspective ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

themore cases that sMerge solves. Firstly, we evaluate sMerge based
on the existing tests. Through this experiment, we find that when

the developers modify the code, they frequently neglect to add

tests to verify their modifications. In addition, we find that the

ground truth of some data is incorrect. sMerge achieves further
improvement on the corrected dataset. Secondly, we expand the test

suite with the automatic test generation tools EvoSuite and the LLM

GPT-4. sMerge can resolve 78.13% (75/96) conflicts automatically

and the precision exceeds 97%, indicating the soundness of sMerge.
By contrast, the precision of SOTA technique is only close to 70%,

which is unreliable and cannot justify the choices. Lastly, we further

manually supplement the test suite for the remaining 21 conflicts

that cannot be solved automatically. With the manually crafted test

cases that reveal the behavior difference, sMerge can solve almost

all the conflicts and the precision approaches 100%.

In summary, this paper makes the following contributions:

• A behavior-difference-based perspective, which defines the

merge problem formally and resolves the conflicts by identify-

ing the behavior differences of conflicting versions.

• A testing-based implementation, which leverages several

test generation techniques to depict the program behaviors.

• An GPT-based test generation technique which iteratively

refines the tests to identify the behavioral differences.

• Asound resolving approach, which solves the problem soundly

and identifies wrong ground truths provided by the developers.

The data and replication scripts are available in the repository [2].

2 MOTIVATION
In this section, we will introduce the motivation, i.e., the importance

of behavioral differences and testing for resolving conflicts.

2.1 Importance of Behavioral Differences
The root cause of conflicts is the behavioral differences between

conflicting versions. We present an illustrative example in Fig-

ure 1. It is a conflict computed by git, where the code between
<<<<<<< a and ======= is from A, and the code between

======= and >>>>>>> b is from B. Both versions intend to

add a date-parsing function, which accepts a date string and extracts

the “year”, “month”, and “day” from it. A splits the string with “/”

and parse the split parts to date. However, this program can only

process the date with the format of “yyyy/MM/dd”. By contrast,

B leverages the “LocalDate” library to parse the date string and

supports various formats of date. When the input date string is

with the format of “yyyy/MM/dd”, B has the same behavior of A;

but when the date string is of other formats, only B can process.

Therefore, the behaviors of B subsumes that of A, we thus should

choose B as the resolution. This conflict cannot be resolved if not

from the perspective of behavior differences.

2.2 Importance of Test Cases
The previous example indicates the importance of behavioral differ-

ences in resolving conflicts. In order to identify the differences, test

cases are necessary. In the previous example, without test cases,

we cannot judge whether the two versions have the same behav-

iors only with text analysis or static analysis. We show another

<<<<<<< Version A
public Map<String, Integer> parseDate(String dateString) {

Map<String, Integer> dateMap = new HashMap<>();
String[] parts = dateString.split("/");
int[] values = new int[3];
for (int i = 0; i < parts.length; i++) {

values[i] = Integer.parseInt(parts[i]);
}
dateMap.put("Year", values[0]);
dateMap.put("Month", values[1]);
dateMap.put("Day", values[2]);
return dateMap;

}
=======
public Map<String, Integer> parseDate(String dateString) {

Map<String, Integer> dateMap = new HashMap<>();
List<String> formats = Arrays.asList("yyyy-MM-dd“, ,

 "dd/MM/yyyy", "MM-dd-yyyy", "yyyyMMdd", "MM/dd/yyyy");
for (String format : formats) {

try {
DateTimeFormatter formatter = DateTimeFormatter.
ofPattern(format);
LocalDate date = LocalDate.parse(dateString,
formatter);
dateMap.put("Year", date.getYear());
dateMap.put("Month", date.getMonthValue());
dateMap.put("Day", date.getDayOfMonth());
break;

} catch (DateTimeParseException e) {
continue;

}
}
return dateMap;

}
>>>>>>> Version B

Figure 1: The motivating example showing the importance
of behavioral differences

example in Figure 2 to show the importance of tests in reveal-

ing the behaviors. The top part shows the conflict, where two

versions add an exception handler but the concrete implementa-

tions are different. The bottom part shows the method call chain

of “getInstance().halt()” added by A. It is a 5-step method

call chain and finally calls a function in another class file, which

also throws a “HaltException”. This case is challenging for text or
static analysis, because of the long call chain and involving multiple

data structures. By contrast, by executing tests, we find that both

versions throw a “HaltException” but the file from which the ex-

ception is thrown is different. Therefore, tests can clearly identify

the behavioral similarity and difference of the two versions. Tests

is a simple and intuitive way to observe the program behaviors.

3 PROBLEM DEFINITION
Each program has its specificationS, which refers to a set of require-
ments, standards, or constraints that the software must meet [22].

They are used to ensure the code is implemented correctly and

ensure the behaviors satisfy the requirements. Therefore, the be-

haviors of the software should adhere to S. In the evolutionary

process of a program, the commits bring the program closer to S
gradually. When conflicts happen, among those versions, in gen-

eral, O is the farthest from S, and A and B evolves closer to S.
However, the direction A and B evolve from O may be different,

so their modifications may affect each other. We need to produce a

resolution versionM which involves both newly-added features

of A and B, and is closer to S than A and B.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong, and Dan Hao

<<<<<<< Version A
public static void halt(int status, String body) {

getInstance().halt(status, body);
=======
public static HaltException halt(int status, String body) {

throw new HaltException(status, body);
>>>>>>> Version B

getInstance().halt(status, body)

SingletonHolder.INSTANCE;

ignite()

new Service()

throw new HaltException();

Spark.java

Service.java

5-Step Method Call Chain of Version A

Figure 2: The motivating example for the importance of tests

3.1 Definition of Software
First, we will give a definition to the software.

Definition 3.1. A software is in the evolution process, and it is

gradually updated as the developers submit the commits. Therefore,

a software is a finite set of commits C = {𝐶1,𝐶2, ...,𝐶𝑛}.

For the software, letS be the ground-truth specification, which is

the requirements the software needs to satisfy.S can be represented

by a set of program behaviors. The commits are submitted to make

the program behaviors satisfy S. It is worth noting that we will

first verify whether each commit can pass its own tests. If false,

the commit should be fixed before sumbitted. If true, we assume

the commit satisfies the expected behaviors defined by S. If the
commit is still incorrect, this is out of our scope. We cannot verify

the correctness without neither sufficient tests nor specifications.

Each commit may introduce or update program behaviors and

correspondingly should introduce new test cases to check the pro-

gram behaviors. The test cases are the concrete manifestation of

the program behavior. Let 𝐵 and 𝑇 be the program behaviors and

test cases added or updated by the commit. We assume that 𝐵 ⊆ S
and 𝑇 ⊆ S, i.e., the newly introduced program behaviors and test

cases are consistent with the ground-truth specification. In other

words, the (implicit) ground-truth specification is assumed to be

constant and the commits gradually complete the specification.

Therefore, each commit consists of three parts, that is, the imple-

mentation of code 𝐼 , the program behaviors 𝐵, and the test cases 𝑇 .

The software can be defined as C = {𝐶1,𝐶2, ...,𝐶𝑛} = {(𝐼1, 𝐵1,𝑇1),
(𝐼2, 𝐵2,𝑇2), ..., (𝐼𝑛, 𝐵𝑛,𝑇𝑛)}. The implementation should meet the

newly-added behaviors, that is, 𝐼𝑖 |= 𝐵𝑖 . This can be reflected by

whether 𝐼𝑖 passes the newly-added tests 𝑇𝑖 , that is, 𝐼𝑖 |= 𝑇𝑖 . In the

evolution process, the developers make the software approach S
gradually. The merge problem can be defined as follows.

Problem 3.1. Given two conflicting commits (𝐼1, 𝐵1,𝑇1) and (𝐼2, 𝐵2,𝑇2),
find 𝐼 such that 𝐼 |= 𝐵1 ∪ 𝐵2 and 𝐼 is minimally different from 𝐼1 and
𝐼2.

𝑪𝒂

𝑪𝒃

Common
Base

Branch
A

Merge
Commit

Branch
B

Figure 3: Illustrating of merging two branches

The resolution 𝐼 should satisfy the behaviors of both conflicting

versions. During implementation, because tests are the manifesta-

tion of behaviors, we find 𝐼 such that 𝐼 |= 𝑇1 ∪𝑇2.

3.2 Multi-Branches Collaborative Development
Modern software is complex and evolves quickly, so it is impossible

for a single developer to complete the whole software. Different

developers will fork their own branches and work simultaneously,

which can increase the development efficiency. As shown in Fig-

ure 3, two developers work concurrently in their respective branch.

Assuming the number of developers is 𝑘 , the commits C can be

divided into 𝑘 groups, i.e., {C1, C2, ..., C𝑘 }. The group of commits

C𝑖 is from the 𝑖-th developer. The total set of commits is the union

of the subset of commits from each developer, and the subset of

commits from different developers have no intersection, i.e.,

C =

𝑘⋃
𝑖=1

C𝑘 (1)

∀𝑖, 𝑗 ∈ 1..𝑘, C𝑖 ∩ C𝑗 = ∅ (2)

Each group C𝑖 consists of the commits from the 𝑖-th developer,

C𝑘 = 𝐶1

𝑘
,𝐶2

𝑘
, ...,𝐶

𝑛𝑘
𝑘

, which are in chronological order. In the de-

velopment process of one single developer (e.g., within branch A

or branch B), the commits evolve consistently towards the same

direction, and 𝐶𝑖+1
𝑘

is developed based on 𝐶𝑖
𝑘
, so there will not hap-

pen conflicts. However, when the commits from two branches need

to be merged, the conflicts might happen. The merge commit in

Figure 3 is the symbol of merging.

Therefore, we focus on the cases where the two commits to

be merged are from different branches, which might cause con-

flicts. Existing VCS (e.g., git) all leverage text-based algorithm (i.e.,

diff3 [1]) to identify the conflicts. Therefore, to combine with

the widely-used VCS, sMerge first receives the textual conflicts

returned by “git merge” as input, and then resolves the conflicts

based on the behavior differences. The textual conflicts happen

when two commits modify the same parts of code, i.e., 𝐼𝑎 ∩ 𝐼𝑏 ≠ ∅.
The textual conflicts that are not conflicting from program behav-

iors can be resolved and those that are conflicting will be identified

as behavioral conflicts, which will be introduced in Section 4.

4 APPROACH
sMerge consists of three stages, i.e., generating tests, executing

tests, and resolving conflicts, and the overview is shown in Figure 4.

Revisiting the Conflict-Resolving Problem from a Semantic Perspective ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Tests for 𝐴

Tests for 𝐵

Code 𝐴

Code 𝐵

Testing Results

Search
based

GPT
based

Manually
Written

Test Generation Test Execution Conflict Resolution

B’s Passed Tests

A’s Passed Tests AB’s Passed Tests

Conflicting Tests
Resolutions

Select 𝐴

Select 𝐵

Concat (𝐴, 𝐵)

Behavior Conflicts

Figure 4: The overview of sMerge

protected Object encodeCommand(Channel channel, Command command) {
switch (command.getType()) {

...
case Command.TYPE_SET_TIMEZONE:

<<<<<<< Version A
return formatTextCommand(channel, command, "LZ,{%s},{%s}",
Command.KEY_LANGUAGE, Command.KEY_TIMEZONE);

=======
return formatTextCommand(channel, command, "LZ,,%s",
Command.KEY_TIMEZONE);

>>>>>>> Version B
case Command.TYPE_SET_INDICATOR:

return formatTextCommand(channel, command, "FLOWER,%s",
Command.KEY_DATA);

...

Figure 5: Case 2: two versions have behavioral conflicts
(traccar-8a696af)

Firstly, we produce tests automatically and manually (Section 4.4).

Secondly, sMerge identifies the behavior differences by executing

both versions’ tests on each version. Finally, we resolve the con-

flicts based on the behavior differences. The general idea is that

resolution needs to subsume the behaviors of both versions. The re-

solving process consists of three steps, including checking whether

the commits are unmergable and how to make them mergable (Sec-

tion 4.1), resolving the mergable (Section 4.2), and handing the rest

with heuristics (Section 4.3).

4.1 When they are unmergable
The following shows three unmergable cases and how they can be

identified.

• Case 1: 𝐼1 ̸ |= 𝑇1 or 𝐼2 ̸ |= 𝑇2, i.e., a commit is inconsistent with

its own test cases. Checking whether this is the case is easy as

we simply test whether each commit is consistent with its test

cases. If it is not the case, we consult the author of the commit

and ask him/her to solve the issue before committing.

• Case 2: ∃𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 . 𝑡1⊗𝑡2 where 𝑡1⊗𝑡2 means that the two

test cases 𝑡1 and 𝑡2 are conflicting in behaviors. Figure 5 shows

one such example. 𝐼1 and 𝐼2 modify the return statement dif-

ferently and cause the behavioral conflicts. Checking whether

the two commits fall in this case is relatively easy in practice.

We exam 𝑇1 and 𝑇2 to see whether they are the same test cases

with different assertions. In such a case, the authors of the two

commits must be consulted as it is apparent that they have

different understanding on how the system should behave.

• Case 3: ∃𝑡1 ∈ 𝑇1 . 𝐼2 ̸ |= 𝑡1 and ∃𝑡2 ∈ 𝑇2 . 𝐼1 ̸ |= 𝑡2. Intuitively, this

case happens when each commit fails to satisfy some of the test

cases of the other commit. For instance, Figure 6 shows one

such example. 𝐼1 (version A) and 𝐼2 (version B) introduce new

functions respectively, and they will not pass the tests of each

other. While in theory, it is possible to apply program synthesis

methods to synthesize a program based on 𝐼1 and 𝐼2 such that

it satisfies 𝑇1 ∪𝑇2, such an approach is still rather impractical

due to the limited capacity and scalability of existing program

synthesis techniques. We thus propose a candidate resolution

𝐼𝑐𝑎𝑡 , which concatenates 𝐼1 and 𝐼2 on the level of lines, and verify

whether 𝐼𝑐𝑎𝑡 |= 𝑇1 ∪ 𝑇2. If true, 𝐼𝑐𝑎𝑡 subsumes the behaviors

of 𝐼1 and 𝐼2, and we output 𝐼𝑐𝑎𝑡 as the resolution. If false, the

two conflicting versions are mutually influenced, and to make

the results sound, we do not attempt to merge the commits

automatically in such a case. We rather present the author of

𝐼1 with those test cases in 𝑇2 that are failed by 𝐼1 (and vice

versa), and decide whether to fix 𝐼1 or discard those test cases

from𝑇2. Because the three strategies (A, B, and concatenating)

already occupy 98% resolutions in the open source projects [35],

we only validate the resolution “concatenating” to reduce the

execution overhead and improve the usage experience of users.

On the other hand, any new strategy can be easily added to

sMerge.

4.2 When they are mergable
The following shows two cases in which the commits can be merged

straightforwardly.

• Case 4: If 𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2, the merging result is 𝐼1.

Intuitively, if 𝐼1 passes all those test cases of 𝑇2 and yet 𝐼2 fails

some test cases of 𝑇1, 𝐼1 subsumes the behaviors of 𝐼2 and 𝐼1 is

closer to satisfy (𝑆), and thus is objectively better. For instance,

Figure 7 shows one such example. 𝐼2 removes the space at the

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong, and Dan Hao

<<<<<<< Version A
public static List<String> getEntityAuthorities(String entityName)
{

List<String> authorities = new ArrayList<>();
for (Permission permission : Permission.values())

...
=======
public static boolean isSessionExpired(HttpServletRequest request)
{

return request.getRequestedSessionId() != null
&& !request.isRequestedSessionIdValid();
}
>>>>>>> Version B

Figure 6: Case 3: both versions fail to satisfy the test cases of
the other version (molgenis-a20bee9)

<<<<<<< Version A
...
for(String tableKey : tableConfigMap.keySet()){
TableConfig itemConfig = tableConfigMap.get(tableKey);

 if((tableKey.equalsIgnoreCase(table) && itemConfig!=null)
|| tableKey.equals("*")){

schemaConfig = schemaConfigMap.get(schemaKey);
schema = schemaKey;
tableConfig = itemConfig;

...

=======
...
for(String tableKey : tableConfigMap.keySet()){
TableConfig itemConfig = tableConfigMap.get(tableKey);
if(tableKey.equalsIgnoreCase(table) && itemConfig!=null){

schemaConfig = schemaConfigMap.get(schemaKey);
schema = schemaKey;
tableConfig = itemConfig;

...

>>>>>>> Version B

Wrong Ground Truth:
Select version B
Corrected Ground Truth:
Select version A

Figure 7: Case 4: version A can pass tests of both versions
(Mycat-Server-c42db00)

beginning of each line, which doesn’t change the behavior of

the original version. 𝐼1 adds “disjunction” to the condition, and

more cases can enter the True branch compared to the original

version, which introduces new behaviors and provides new tests

to verify the behavior. Therefore, the behaviors of 𝐼1 subsume

that of 𝐼2, and 𝐼1 can pass both 𝑇1 and 𝑇2, but 𝐼2 cannot pass 𝑇1.

In addition, the ground truth of this example is incorrect and

we will introduce in Section 6.1.2.

• Case 5: If 𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2, the merging result is 𝐼2.

This case is symmetric to Case 4.

4.3 When heuristics are applied
The last case is that when both 𝐼1 and 𝐼2 satisfy 𝑇1 ∪𝑇2. Behavior-

wise it does not matter which commit that we choose, i.e., either

one is correct. Such a case takes place due to the conflicts on non-

functionality parts (e.g., comments), which cannot cause the behav-

ior differences. Since we have no way to tell the difference between

𝐼1 and 𝐼2, we resolve with heuristics. The following heuristics are

adopted for comments. Note that we omit the symmetric case since

it is obvious. (1) If both 𝐼1 and 𝐼2 add or modify the comments,

𝐼𝑐𝑎𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐼1, 𝐼2) is returned. (2) If 𝐼1 updates the comments, and

JDK

Version B

Conflicts

5

Fail

Compile/
Execute

Error
Feedback

JDK

Difference
Feedback

Final
Tests

Passed
Tests on A

Generated
Tests for A

1 2

3Bug Fixer

6Differences Identifier

4

Success

Run A

Run B

Success

8

7

Fail

Version A

Figure 8: The overview ofMergeTester

𝐼2 deletes the same comments, 𝐼1 is selected. (3) If 𝐼1 updates the

code parts, and 𝐼2 updates the comment parts, 𝐼𝑐𝑎𝑡 is returned.

4.4 Automatic Test Generation
Note that the above discussion makes it clear that the more test

cases to reveal the behavioral differences between two versions,

the better we are able to check whether the versions are mergable

or how they should be merged. Ideally, each commit should be

accompanied with test cases that reflect the change or capture

the newly introduced feature. In practice, however, 𝑇1 and 𝑇2 are

often limited or even non-exist, which causes that the introduced

behaviors are unverified. Therefore, we propose two automatic

ways of enriching the test cases for resolving the conflicts.

4.4.1 Automatic Test Generation with EvoSuite. We first leverage

the widely-used EvoSuite [17] to generate tests for the conflicting

parts. EvoSuite is a search-based test generation for increasing

the coverage, which leverages evolutionary algorithms [17]. It can

capture the current behaviors, so the tests generated by EvoSuite

can help depict the program behaviors of each version. We validate

each version on the tests generated for both versions, and use the

execution results to produce the resolutions based on the strategies

introduced before. We also execute O on the generated tests. When

running A and B on a specific test, the behavior that differs from

O will be regarded as the oracle behavior. This decision logic is the

same with git, which reserves the text different from O. However,

if both versions’ behaviors are different from O, the behavioral

conflicts happen.

4.4.2 Automatic Test Generation with GPT-4. EvoSuite is a search-
based technique and focuses on increasing the coverage of code,

which cannot understand the testing semantics and lack of general

knowledge, and tends to build the naive and minimal objects [37].

Some branches are semantics-related and difficult for EvoSuite to

achieve [24]. For example, a condition that accepts a certain pro-

gram version string (e.g., “3.2.3”) requires the comprehension of

semantics. If we know it needs a version, we can easily produce a

string with numbers separated by “.”; however, it is difficult for a

Revisiting the Conflict-Resolving Problem from a Semantic Perspective ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

search-based technique to achieve the branch by mutating a ran-

dom string. Moreover, a condition might require a complex object

with nested structures or require the outcome of a long method

call chain [37, 37], which needs the understanding of semantics.

Furthermore, without the understanding of conflicting behaviors,

even if the test covers the conflicting parts, it might also not iden-

tify differences. Therefore, besides EvoSuite, we also leverage the

most powerful LLM GPT-4 [29] to generate tests for identifying the

behavioral differences. LLM has a strong code understanding [27]

and code generation [14, 16] ability, which is also applied to test

generation and achieves good performance [37, 38].

We propose an automatic behavioral-differences-identifying test

generation approach for resolving conflicts, i.e.,MergeTester, and
the overview is shown in Figure 8. We only show the process to

generate tests for version A, and that for B is the same. Existing

LLM-based test generation techniques [37, 38] aim to improve the

compilation rate or coverage. Different from them, MergeTester
needs to generate tests for two versions and reflect their behav-

ioral differences.MergeTester receives the conflicts as input, and
generates the initial tests for both versions simultaneously, which

is beneficial for GPT-4 to capture the their differences. After that,

MergeTester iteratively refines the tests to be executable and reveal

the behavioral differences, which is achieved by two components.

• Bug Fixer iteratively corrects the bugs of the generated tests

based on the execution feedback. MergeTester executes the
tests and collects the bug information, which is provided to

MergeTester for further improvement. This component is simi-

lar to existing work [38].

• Difference Identifier will execute the tests on the other version if

passed on current version. If the execution results are identical,

which indicates that the tests cannot identify the behavioral

differences, a “executable-but-undifferentiable” feedback will

be provided to MergeTester and lets it generate another test.

5 EXPERIMENTAL SETUP
5.1 Research Questions
In this section, we will introduce the research questions that we

aim to answer through experiments. We expand the test set and

evaluate sMerge’s performance with different set of test cases.

• RQ1. Initial Performance How does sMerge perform based

on the existing test cases only?

• RQ2. Automatically Generated Tests How does sMerge
performwhen the test suite enhanced by automatic techniques?

• RQ3. Behavior-Differences-RevealedTestsHowdoes sMerge
perform when the tests revealing the differences are provided?

5.2 Dataset
We evaluate the performance of sMerge with two well-constructed

datasets [33, 35] and merge them together. These datasets are mined

from the top popular projects of GitHub and used for empirical

study [33] or verify the conflict resolving techniques [13, 35]. Since

the previous techniques leverage ASTs or deep learning models to

process the dataset, they do not need to execute the projects. By

contrast, sMerge needs to build and execute the projects to obtain

the test execution results. To prepare the dataset for sMerge, we

further process the datasets by static filter and dynamic execution,

which is introduced below. Although sMerge requires test execu-
tion, it is one stage in normal development cycle so sMerge will
not bring extra cost to the developers.

5.2.1 Static Filter. To adapt to our experimental setting, we use

the following conditions to filter the conflicts. (1) We filter out the

conflicts failing to recognize the resolution regions. (2) We filter out

the conflicts not happening in “.java” files, (3) To make the build

and execution easier, we only reserve the projects built with Maven.

(4) We filter out the conflicts happening in tests, which means the

conflicts in specifications and corresponds to Case 2 in Section 4.

5.2.2 Dynamic Execution. After we clone the projects, we use the
command git checkout to switch to the two conflicting commits.

We then compile them respectively. Because many of the commits

are historical commits many years ago, some dependencies may not

exist any longer. We filter out the conflicts whose two conflicting

commits cannot be built successfully. Among them, 85.77% of these

issues arise due to dependencies that cannot be found in the Maven

Central Repository or cannot be resolved. After that, we will use

the command git merge to merge the two conflicting commits and

obtain the conflicting version C. We first try to merge the changes

that can be merged directly. And then we build two intermediate

versions A′
and B′

which are based on the conflicting version

C and replace the conflicting parts with that part from A and B.

These two intermediate versionsA′
andB′

are only different in the

conflicting parts. The evaluation on the two intermediate versions

will reflect the real conflicts between the two versions and avoid

the influence of other different parts of two versions that are not

conflicts. Then, we compile the two intermediate versions A′
and

B′
and we filter out the failed conflicts. In addition, we filter out

the data whose tests cannot be executed because of environments

or dependencies. We further filter out the cases that cannot pass

its own attached tests, which corresponds to Case 1 in Section 4.

Finally, we remain 153 conflicting situations. The two versions

A′
and B′

will be used to execute tests and resolve conflicts. We

remark that the static and dynamic filtering are applied only for

practical reasons (i.e., so that we can execute these projects) and

they are not designed to harm the dataset’s representativeness.

5.3 Compared Techniques
We compare sMerge against existing SOTA approaches in terms of

merge precision and recall. The SOTA techniques MergeGen [13]

and MergeBERT [35] are learning-based techniques and resolve

conflicts by generation and classification respectively. In addition,

we compare with the structured technique designed for Java, JDime.

Compared with existing techniques, besides higher precision and

recall, sMerge is sound and can justify the resolution results.

5.4 Evaluation Metrics
Following the previous works [12, 13, 35], we compute the precision

and recall to evaluate sMerge. Precision refers to the percentage

of correctly-resolved conflicts out of the conflicts the model can

return a prediction. sMerge will not return if the test results cannot

identify behavioral differences. Recall refers to the percentage of

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong, and Dan Hao

Table 1: Performance of sMerge with only existing tests

Test Results Strategy Precision Recall

𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Select A 66.67% (8/12) 27.59% (8/29)

𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2 Select B 77.78% (7/9) 41.18% (7/17)

𝐼𝑐𝑎𝑡 |= 𝑇1 ∪𝑇2 and 𝐼1, 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Concat(A, B) 100% (24/24) 22.43% (24/107)

Ratio of cases sMerge can give resolutions: 29.41% (45/153)

Overall - 86.67% (39/45) 25.49% (39/153)

correctly-resolved conflicts out of all conflicts. As shown in Sec-

tion 4, sMerge has six situations. Case 1 is filtered during the dataset
construction stage, and Case 6 is using heuristics. Therefore, we

will show the precision and recall of another four cases. Precision is

more important in this task. High precision means that developers

do not need to check the returned predictions.

5.5 Implementation
sMerge is established on the basis of git merge command, which

is the most widely used merge technique in VCS (e.g., Git). We will

resolve the conflicts detected by git merge. We use EvoSuite and

GPT-4 to supplement the test suite. The version of EvoSuite we use

is 1.0.6. For GPT-4, we leverage the official ChatGPT API [29], and

we adopt the powerful gpt-4-turbo model. The temperature is set

to 0.7 and the iterative rounds are set to 10. Moreover, the prompt

is shown in our repository [2]. The implementation details about

building and executing projects are already shown in Section 5.2.

6 RESULTS AND ANALYSIS
In this section, we present the performance of sMergewith existing

tests only in Section 6.1, the performance with automatic test gen-

eration techniques in Section 6.2, and the performance when the

remaining unsolved cases are provided manual tests in Section 6.3.

6.1 RQ1: sMerge with Existing Tests Only
We execute existing attached tests to evaluate the two conflicting

versions, and produce resolutions based on the execution results. If

the tests of both versions cannot identify the behavioral differences,

sMerge regards it unsolvable. The execution results are shown in

Table 1. We show the precision and the recall of three strategies

corresponding to Case 3-5 in Section 4. sMerge doesn’t find the

conflicting cases with existing tests, so the results are omitted. For

example, the precision of choosing B is 77.78%, that is, there are 9

cases that sMerge predicts as choosing B, among which 7 is correct.

Moreover, the overall precision is 86.67% and the overall recall is

only 25.49%.

Table 2: Performance of sMerge with existing tests after cor-
recting wrong ground truths.

Test Results Strategy Precision Recall

𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Select A 83.33% (10/12) 31.25% (10/32)

𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2 Select B 100% (9/9) 56.25% (9/16)

𝐼𝑐𝑎𝑡 |= 𝑇1 ∪𝑇2 and 𝐼1, 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Concat(A, B) 100% (24/24) 23.3% (24/103)

Number of identified wrong labels: 4

Overall - 95.56% (43/45) 28.1% (43/153)

The test suite attached by the developers is used to verifywhether

the code satisfies the specifications. It is important that developers

maintain a quality test suite, and create/update the tests whenever a

modification is made. However, developers often neglect to update

tests. When the tests can reveal the specifications, sMerge is sound
and the answers will be correct. Therefore, in terms of the poor

results with the existing tests only, there are two possible reasons,

i.e., (1) the test suite provided by the developers is insufficient; (2)

the ground truths are incorrect, and we find that both situations

happen. sMerge can help identify the problems that the key tests

are neglected and the ground truths are incorrect.

6.1.1 Insufficient Test Cases. With the existing tests, only 45 of 153

conflicts can be solved and given an answer by sMerge. Themajority

of the execution results on A and B are the same. This indicates

that existing tests cannot identify the behavioral differences of

conflicting versions. sMerge will not predict a resolution when

tests cannot reveal differences. Therefore, the existing test suite

provided by the developers is insufficient. The modified code is

not verified and there is limited evidence that the modification is

correct. We will solve this problem in the following.

Among the cases where sMerge can solve, the precision of

sMerge is 86.67%. We carefully check the wrong conflicts, and

found that among the 6 cases, 2 of them are caused by the insuffi-

cient tests of one version. Both versions introduce new behaviors

but only one behavior is identified by the tests. This is solved after

adopting test generation (see Section 6.2.1).

6.1.2 Correct Wrong Ground Truths. Another 4 of the wrongly-

predicted cases have the wrong ground truths, which are confirmed

by the developers. This indicates that the resolutions conducted

by the developers may also be incorrect and sMerge can help cor-

rect the wrong ground truths. The developers do not consider the

behavior differences to resolve the conflicts, which causes the prob-

lems. We show the results of sMerge after correcting the wrong

labels in Table 2. The precision increases from 86.67% to 95.56%,

which is high. The recall is still low because of the insufficient tests.

Precision is more important than recall. High precision means the

developers do not need to check the returned correctness.

We show an example whose ground truth is incorrect and iden-

tified by sMerge, which is the same example in Figure 7 of the

Approach section. The behaviors of A subsumes that of B, so A
should be selected. However, the ground truth is choosing B. The

existence of wrong ground truths also reflects the problems of ex-

isting techniques. The learning-based techniques use the wrong

ground truths to train the model, which will harm the performance.

6.2 RQ2: sMerge with Generated tests
In RQ1, we find that developers often neglect to update or add the

tests when they modify the code, which causes that the tests cannot

identify the behavioral differences. Only 45 of 153 can be solved

because of the insufficient test suite. In the following, we expand the

test suite, and then we evaluate sMerge on the enhanced test suite.

We leverage two automated approaches to generate the tests. Firstly,

we adopt EvoSuite. After that, in terms of the cases where sMerge
still cannot distinguish, we leverage GPT-4 to generate tests. Note

Revisiting the Conflict-Resolving Problem from a Semantic Perspective ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 3: Performance after supplemented by EvoSuite.

Test Results Strategy Precision Recall

𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Select A 90% (18/20) 56.25% (18/32)

𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2 Select B 90.91% (10/11) 62.5% (10/16)

𝐼𝑐𝑎𝑡 |= 𝑇1 ∪𝑇2 and 𝐼1, 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Concat(A, B) 100% (44/44) 42.72% (44/103)

Ratio of cases sMerge can give resolutions: 49.02% (75/153)

Number of identified wrong labels: 6

Overall - 96% (72/75) 37.5% (72/153)

that all the performance in this paper is an overall performance

based on the tests supplemented by previous steps.

6.2.1 Tests Generated by EvoSuite. We supplement tests for the

conflicts whose existing tests of either version cannot identify the

differences. The results are shown in Table 3. To save the space,

we directly show the results after wrong labels are corrected. With

the supplemented tests, sMerge can solve more conflicts, that is,

75 out of 153, accounting for 49.02%. This indicates that the more

test cases that we have to reveal the behavioral differences, the

better we are able to decide how the conflicts should be resolved.

sMerge has a high precision (96%), so as long as sMerge gives a
prediction, it is likely to be correct. The learning-based techniques

can provide a revolution for any input, but the correctness cannot

be guaranteed.

For the cases where sMerge produces wrong resolutions with

existing tests, when combined with the tests generated by EvoSuite,

the cases can be solved successfully. Here we give an example

in Figure 6, the same example in the Approach section. A and B
introduce a new function respectively, i.e., getEntityAuthorities
and isSessionExpired. However, only A supplements a new test

to evaluate getEntityAuthorities, and B doesn’t supplement

new tests. Only one behavior difference can be identified. B cannot

pass the tests from A, while A can pass all tests from B, so A will

be chosen. After EvoSuite supplements the tests suite, it successfully

generates tests to evaluate the modifications introduced by B. In

this way, both two behavioral differences are identified and we

should reserve both of them.

There are three cases where sMerge makes mistakes, and the

reason is similar to the aforementioned case. The ground truths

of are concatenating A and B, but sMerge chooses certain ver-

sion. The tests EvoSuite generates cover the conflicting parts of

one version but fails to cover the other version. Therefore, sMerge
wrongly selects certain version. EvoSuite cannot guarantee to cover

the targeted parts because search-based algorithm lacks of seman-

tics and knowledge, and they tend to build the naive and minimal

objects [37]. Moreover, without the understanding of conflicting

behaviors, even if the test covers the conflicting parts, it might also

not identify differences. Therefore, we further leverage GPT-4 to un-

derstand the semantics of conflicts and further supplement the tests.

And all the three cases are solved after supplementing tests with

GPT-4. One example is that, B adds a private constructor to avoid

instantiation, and the intention is difficult to understand. EvoSuite

fails to generate a test revealing this behavior, but GPT-4 success-

fully reveals it by verifying whether the modifier of constructor

is private. This is because GPT-4 can understand the semantics of

private constructor and leverage the rich knowledge to solve it.

Table 4: Performance after further supplemented by GPT-4.

Test Results Strategy Precision Recall

𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Select A 100% (21/21) 65.62% (21/32)

𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2 Select B 91.67% (11/12) 68.75% (11/16)

𝐼𝑐𝑎𝑡 |= 𝑇1 ∪𝑇2 and 𝐼1, 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Concat(A, B) 100% (77/77) 74.76% (77/103)

∃𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 . 𝑡1 ⊗ 𝑡2 Report Conflicts 100% (1/1) 50% (1/2)

Ratio of cases sMerge can give resolutions: 72.55% (111/153)

Number of identified wrong labels: 9

Overall - 99.1% (110/111) 71.9% (110/153)

6.2.2 Tests Generated by GPT-4. For the cases EvoSuite cannot

generate tests that distinguishA and B, we further leverage GPT-4

to supplement the tests. GPT-4 has a strong ability to understand

code and can capture the semantic differences between conflicting

versions, which can make up the semantic understanding drawback

of EvoSuite. The results are shown in Table 4.

Plus the tests supplemented by GPT-4, sMerge can solve an-

other 23.53% (36/153) cases, and can solve 72.55% (111/153) cases

in total. sMerge achieves high precision for each category. We fur-

ther find 3 cases whose ground truths are incorrect. In addition,

we identify one behavior conflicting cases. Both A and B mod-

ify the throw message to different ones, and GPT-4 can generate

tests to capture this conflicting behavior. The ground truth is in-

correct that selects certain version, but in fact this case should

involve developers to solve the behavioral conflicts. Furthermore,

the three wrongly-predicted cases using EvoSuite can all be solved

plus the tests introduced by GPT-4. Here we give an example that

EvoSuite cannot produce the tests revealing the behaviors but GPT-

4 can in Figure 9. This modification replaces “zone_info” with
“zoneinfo” in the “claims_supported” list, which is further in the

“entity” map. “entity” map also has an “issuer” item. This object is a

complex nested structure so EvoSuite cannot generate. GPT-4 can

understand the semantics and the construction process, so GPT-4

generates the correct test, which is shown in Figure 9b. GPT-4 cor-

rectly construct the object and depict the behaviors by verifying

the replacement from “zone_info” to “zoneinfo”.
However, there still exist some cases that GPT-4 cannot produce

the resolutions. Among the 79 cases where GPT-4 tries to generate

tests, 31.65% of the generated tests cannot be compiled or executed

successfully, and 16.46% produce the same results on both versions.

The uncompilable problem is caused by the hallucination of GPT-

4, and sometimes even after multi-round feedback, it still cannot

produce the executable tests. GPT-4 often generates the tests with

the correct testing logic, but it may invoke the functions absent

in this projects. The undistinguishable problem is because some

branches have long call chains so that challenging to reach.

6.2.3 Heuristic. After leveraging EvoSuite and GPT-4, we further

leverage the heuristic rules proposed in Section 4.3. With our heuris-

tic rules, we can handle 8 of 9 conflicting cases related to comments.

Therefore, in total, sMerge can automatically solve 78.43% (120/153)

cases and 118 of 120 are correct, the precision is 98.33% and the

recall is 77.12%. By comparison, the SOTA techniques MergeBERT

and MergeGen achieve a precision of 63.9% and 69.2% respectively,

and achieve a recall of 63.2% and 67.7% respectively. The total re-

sults on the automatically-solved cases are shown in Table 5. This

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong, and Dan Hao

public static Map<String, Object> buildOidcServer(final Model
model) {

final Map<String, Object> m =
Map.class.cast(model.asMap().get("entity"));
final String baseUrl = m.get("issuer").toString();
m.put("token_endpoint", baseUrl + "profile" +

TokenEndpoint.URL);
m.put("userinfo_endpoint", baseUrl + "profile" +

UserInfoEndpoint.URL);
m.put("jwks_uri", baseUrl + "profile" +

JWKPublishingEndpoint.URL);
+ final List claimsSupported = new ArrayList((List)
m.get("claims_supported"));
+ claimsSupported.remove("zone_info");
+ claimsSupported.add("zoneinfo");
+ m.put("claims_supported", claimsSupported);

m.remove("service_documentation");
m.remove("op_policy_uri");
m.remove("op_tos_uri");
return m;

}

(a) Conflicting code
@Test
public void testBuildOidcServer() {

Model model = new BindingAwareModelMap();
List<String> claimsSupportedList = new ArrayList<>();
claimsSupportedList.add("zone_info");
Map<String, Object> entityMap = new HashMap<>();
entityMap.put("issuer", "http://example.com/");
entityMap.put("claims_supported", claimsSupportedList);
model.addAttribute("entity", entityMap);
Map<String, Object> result = OidcUtils.buildOidcServer

(model);
List<String> claimsSupported = (List<String>)

result.get("claims_supported");
// check if "zone_info" is removed and "zoneinfo" is added.
assertTrue("Should contain 'zoneinfo'",

claimsSupported.contains("zoneinfo"));
assertFalse("Should not contain 'zone_info'",

claimsSupported.contains("zone_info"));
}

(b) Test generated by GPT-4

Figure 9: The example where EvoSuite cannot produce useful
tests but GPT-4 can (shibboleth-oidc-3e183a0)

Table 5: Overall performance on the cases that can be auto-
matically solved.

Test Results Strategy Precision Recall

𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Select A 100.0% (22/22) 68.75% (22/32)

𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2 Select B 87.5%(14/16) 87.5% (14/16)

𝐼𝑐𝑎𝑡 |= 𝑇1 ∪𝑇2 and 𝐼1, 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Concat(A, B) 100% (81/81) 78.64% (81/103)

∃𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 . 𝑡1 ⊗ 𝑡2 Report Conflicts 100% (1/1) 50% (1/2)

Ratio of cases sMerge can give resolutions: 78.43% (120/153)

Number of identified wrong labels: 9

Overall (sMerge) - 98.33% (118/120) 77.12% (118/153)

JDime [3] Structure-based 26.3% 21.6%

MergeBERT [35] Learning-based 63.9% 63.2%

MergeGen [13] Learning-based 69.2% 67.7%

results indicate that sMerge can automatically solve the majority

of the cases and the results of sMerge are sound and trustworthy.

6.3 sMerge with Manually Crafted Tests
In RQ2, we introduce the results on the cases that can be auto-

matically solved. For the rest of 33 unsolved cases, because of the

Table 6: Performance of sMerge when further supplemented
with manual tests.

Test Results Strategy Precision Recall

𝐼1 |= 𝑇1 ∪𝑇2 and 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Select A 100% (30/30) 93.75% (30/32)

𝐼2 |= 𝑇1 ∪𝑇2 and 𝐼1 ̸ |= 𝑇1 ∪𝑇2 Select B 88.89%(16/18) 100% (16/16)

𝐼𝑐𝑎𝑡 |= 𝑇1 ∪𝑇2 and 𝐼1, 𝐼2 ̸ |= 𝑇1 ∪𝑇2 Concat(A, B) 100% (102/102) 99.03% (102/103)

∃𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 . 𝑡1 ⊗ 𝑡2 Report Conflicts 100% (2/2) 100% (2/2)

Ratio of cases sMerge can give resolutions: 99.34% (152/153)

Number of identified wrong labels: 12

Overall - 98.68% (150/152) 98.04% (150/153)

hard-to-reach branches and the limitations of test generation tools,

some cases cannot be identified the behavior differences or auto-

matic tools cannot produce executable tests. We manually write

tests to validate sMerge, and the total results are shown in Table 6.

After we manually supplement the tests, sMerge can give an-

swers to 152 of 153 cases. Although we cannot solve the 33 cases

with automatic test generation, sMerge can produce the accu-

rate resolutions when given the tests that reveal the behavioral

differences. The precision and recall of each strategy are close

to 100%. It is important that developers create/update the tests

whenever a modification is made. There are only two cases for

which sMerge produces wrong resolutions and one case cannot

be predicted the resolution. All three cases are caused by function-

irrelevant conflicts, which cannot be depicted by tests. One case

is the conflicting comments we mention in Section 6.2.3. Another

two cases are caused by the annotation, which adds the annotation

“@SuppressWarnings("unchecked")” and “@SuppressWarnings
("deprecation")” respectively. The annotation will not affect the

program behavior so that cannot be identified by tests. Additionally,

sMerge is orthogonal to other approaches. When the two versions

cannot be distinguished by tests and behaviors, more heuristic rules

can be applied. Since these contents are function-irrelevant, they

are not as important as the function-relevant contents.

7 DISCUSSION
Applicability of sMerge: In this work, sMerge is evaluated on

a relatively small dataset. The reason is that we must filter those

projects that we fail to execute for various reasons. In practice, we

argue that it will not be a limitation since the developers will defi-

nitely build and run their projects successfully, and our approach

can be integrated to the testing stage of development easily.

Quality of Tests Testing is a common way of evaluating the quality

of the software. In this work, we leverage testing to guide merging

and validate the semantics of the resolutions. The effectiveness of

testing relies on the quality of the test suite. To increase the quality

of tests, we adopt two complementary test generation techniques,

i.e., Evosuite that focuses on increasing coverage and GPT-4 that

aims to “understand” the behavioral difference and generate tests.

Nonetheless, the tests may still not capture the key differences

between two conflicting versions. It is possible to apply further ap-

proaches such as symbolic execution [31, 39] to improve the tests.

However, symbolic execution is time-consuming and cannot apply

to complex Java programs yet. We do not focus on test generation

in this work and remark that our technique can still work to some

Revisiting the Conflict-Resolving Problem from a Semantic Perspective ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

extent even if the tests are incomplete. Improving the test genera-

tion for merging conflicts will be our future work.

Correctness of Commits The developers need to verify the cor-

rectness of the commits before submission. In case 1 of Section 4,

we will first verify whether each version is consistent with its own

tests. If false, the commit should be fixed before sumbitted. If true,

we consider the commit correct, so its behaviors satisfy the spec-

ifications. Therefore, the test generation techniques can directly

use the current behaviors as oracles and verify whether the other

version has its behaviors with these oracles. If the submitted code is

still incorrect, this is out of our scope. We cannot verify the correct-

ness without neither sufficient tests nor specifications. If provided

specifications, sMerge can still work and the general idea is the

same, i.e., to find a resolution which can cover the specifications of

both conflicting versions. We can generate tests based on specifi-

cations or if we have the formal specifications, we can use formal

verification techniques. However, specifications are often lacked.

Threats to Validity Threats to Internal Validity mainly lie in the

implementation accuracy. To mitigate this threat, sMerge is built
upon mature and robust tools such as EvoSuite. To guarantee the

correctness of the generated tests, we iteratively execute the tests

and give the feedback to GPT-4. Threats to external validity mainly

lie in the benchmark we adopt. To alleviate this, we leverage two

benchmarks that are well-constructed in this area. There are many

projects that cannot be compiled. This is because the conflicting

commits are historical commits, some dated several years back, and

the dependencies do not exist any more. To increase the success

rate, we leverage multiple Java versions to build until it is compiled

successfully. Another main threat to external validity lies in the qual-
ity of the tests. Our approach requires tests to reveal the behavioral

differences between two conflicting versions. However, develop-

ers may neglect to update tests and the automatically generated

tests may not reveal the key differences. To alleviate the threats,

we leverage two automatic test generation techniques to augment

the test suite. It has been shown that our approach becomes more

effective with the increase of number and coverage of the tests.

Limitations Firstly, sMerge requires that the tests can depict the

newly-introduced program behaviors. We believe it is important

that developers maintain a quality test suite, and create/update

the tests whenever a modification is made. However, developers

often neglect to update the tests, which makes the modifications

unreliable. We leverage automatic test generation techniques to

supplement the tests, which can solve 78.13% of total cases. Actually,

this limitation is brought by the non-standard development practice.

Secondly, although sMerge is language-independent and can be

applied to various languages, we currently focus our evaluation on

Java. Evaluating the effectiveness on other languages is a future

work to explore.

8 RELATEDWORK
Existing conflict resolution techniques can be classified into three

major categories, i.e., unstructured techniques, structured tech-

niques, and learning-based techniques.

Unstructured Techniques. Unstructured techniques [1, 19]

merge the code based on text and do not leverage other information.

They are adopted in the VCS because of the good generalization

ability. They can only merge the code not modifying the same

locations, so they have limited resolving ability. We regard texts as

a poor source of semantic information. To adapt to the widely-used

VCS, sMerge resolves the conflicts reported by git merge.
Structured Techniques. Structured techniques propose to re-

solve the conflicts based on structure and syntax. They merge the

code by tree AST matching and amalgamation. Moreover, they

leverage the structural information of the specific language to help

resolve the conflicts [3, 4]. Because structured techniques require

operations on trees, the computational complexity is high (cubic

at minimum) [3, 25, 26]. To enhance the efficiency, Apel et al. [3]

suggest dynamically selecting between unstructured and struc-

tured techniques. In addition, structured techniques are language-

specific [3, 4]. Structured techniques still revolve the conflicts not

from semantics. Moreover, static analysis has many false positives

and the precision of JDime (designed for Java) is only 26.3%.

Learning-based Techniques. Recently, learning-based tech-

nique [12, 13, 35] are proposed and achieve the SOTA performance.

They directly use the deep learning models to learn the merging

strategies from the historical data. The input is the conflicting code,

and the output is resolution (generation-based) or the resolving

strategies (classification-based). Although achieving good perfor-

mance, the problem definition is unclear. They lack transparency

in their decision-making processes, making it challenging to un-

derstand or justify the choices. On the contrary, sMerge gives a
formal definition of resolving conflicts based on the root cause,

which makes the results explainable and trustworthy.

Besides conflict-resolving techniques, there are also some conflict-

identifying techniques. Different from them, sMerge focuses on

resolving the textual conflicts from the semantic perspective. Sev-

eral techniques design a representation (e.g., dependency graph [32]

and AST [21]) for the dependencies and identify the modifications

to the dependent program elements as the potential conflicts, which

bring lots of false alarms. Pastore et al. [30] leverages Daikon [15]

to discover the properties of function parameters and identify the

conflicts, which cannot resolve conflicts. Besides, the properties

Daikon discover are irrelevant to the program behavior differences.

Some [9, 20, 36] run the build and test process after the code is suc-

cessfully merged, to discover failures. However, these techniques

only execute existing tests to verify the already merged code, which

cannot resolve the conflicts. Instead, sMerge generates new tests

to identify the behavior differences, which can resolve conflicts.

9 CONCLUSION
We propose a resolution technique from program behaviors. We

first give a formal definition of merge problem, which can justify

our choices. Furthermore, we resolve the conflicts by identifying the

behavioral differences based on testing. Our evaluation shows that

sMerge effectively solves this problem from a different perspective.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation

of China under Grant No. 62372005.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jinhao Dong, Jun Sun, Yun Lin, Yedi Zhang, Murong Ma, Jin Song Dong, and Dan Hao

REFERENCES
[1] 2002. diff3. https://linux.die.net/man/1/diff3.

[2] 2024. Replication package. https://github.com/DJjjjhao/ase24-merge.

[3] Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured merge with

auto-tuning: balancing precision and performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. 120–129.

[4] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Käst-

ner. 2011. Semistructured merge: rethinking merge in revision control systems. In

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. 190–200.

[5] Sven Apel, Jörg Liebig, Christian Lengauer, Christian Kästner, and William R

Cook. 2010. Semistructured Merge in Revision Control Systems.. In VaMoS.
13–19.

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. ACM sigplan notices 49, 6 (2014), 259–269.
[7] Christian Bird and Thomas Zimmermann. 2012. Assessing the value of branches

with what-if analysis. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. 1–11.

[8] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2011. Proactive

detection of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering.
168–178.

[9] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2013. Early

detection of collaboration conflicts and risks. IEEE Transactions on Software
Engineering 39, 10 (2013), 1358–1375.

[10] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and

improving semistructured merge. Proceedings of the ACM on Programming Lan-
guages 1, OOPSLA (2017), 1–27.

[11] Catarina Costa, Jair Figueirêdo, João Felipe Pimentel, Anita Sarma, and Leonardo

Murta. 2019. Recommending participants for collaborative merge sessions. IEEE
Transactions on Software Engineering 47, 6 (2019), 1198–1210.

[12] Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur

Naik, and Shuvendu Lahiri. 2022. Deepmerge: Learning to merge programs. IEEE
Transactions on Software Engineering 49, 4 (2022), 1599–1614.

[13] JinhaoDong, Qihao Zhu, Zeyu Sun, Yiling Lou, andDanHao. 2023. Merge Conflict

Resolution: Classification or Generation?. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1652–1663.

[14] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,

Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating large

language models in class-level code generation. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1–13.

[15] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 1999.

Dynamically discovering likely program invariants to support program evolution.

In Proceedings of the 21st international conference on Software engineering. 213–
224.

[16] Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shu-

vendu K Lahiri. 2024. LLM-based Test-driven Interactive Code Generation: User

Study and Empirical Evaluation. arXiv preprint arXiv:2404.10100 (2024).
[17] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[18] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and Andre Van Der Hoek. 2018.

On the nature of merge conflicts: a study of 2,731 open source java projects hosted

by github. IEEE Transactions on Software Engineering 46, 8 (2018), 892–915.

[19] Git. 2023. Git-merge. https://git-scm.com/docs/git-merge.

[20] Mário Luís Guimarães and António Rito Silva. 2012. Improving early detection

of software merge conflicts. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 342–352.

[21] Lile Hattori and Michele Lanza. 2010. Syde: A tool for collaborative software

development. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2. 235–238.

[22] ASTM INTERNATIONAL. 2022. Form and Style for ASTM Standards, ASTM

Blue Book. (2022).

[23] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive conflict mini-

mization through optimized task scheduling. In 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 732–741.

[24] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.

2023. Codamosa: Escaping coverage plateaus in test generation with pre-trained

large language models. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). IEEE, 919–931.

[25] Olaf Leßenich, Sven Apel, Christian Kästner, Georg Seibt, and Janet Siegmund.

2017. Renaming and shifted code in structured merging: Looking ahead for

precision and performance. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 543–553.

[26] TomMens. 2002. A state-of-the-art survey on software merging. IEEE transactions
on software engineering 28, 5 (2002), 449–462.

[27] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad

Myers. 2024. Using an llm to help with code understanding. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[28] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig.

2019. The life-cycle of merge conflicts: processes, barriers, and strategies. Empir-
ical Software Engineering 24 (2019), 2863–2906.

[29] OpenAI 2023. GPT-4 is OpenAI’s most advanced system, producing safer and more
useful responses. OpenAI. https://openai.com/index/gpt-4/

[30] Fabrizio Pastore, Leonardo Mariani, and Daniela Micucci. 2017. BDCI: Behavioral

driven conflict identification. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 570–581.

[31] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessan-

dro Orso, and Mary Jean Harrold. 2008. Test-suite augmentation for evolving

software. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 218–227.

[32] Anita Sarma, David F Redmiles, and Andre Van Der Hoek. 2011. Palantir: Early

detection of development conflicts arising from parallel code changes. IEEE
Transactions on Software Engineering 38, 4 (2011), 889–908.

[33] Bowen Shen, Muhammad Ali Gulzar, Fei He, and Na Meng. 2023. A characteri-

zation study of merge conflicts in Java projects. ACM Transactions on Software
Engineering and Methodology 32, 2 (2023), 1–28.

[34] Marcelo Sousa, Isil Dillig, and Shuvendu K Lahiri. 2018. Verified three-way

program merge. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1–29.

[35] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Eliza-

beth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K Lahiri.

2022. Program merge conflict resolution via neural transformers. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 822–833.

[36] JanWloka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. 2009. Safe-commit analysis

to facilitate team software development. In 2009 IEEE 31st International Conference
on Software Engineering. IEEE, 507–517.

[37] Chen Yang, Junjie Chen, Bin Lin, Jianyi Zhou, and Ziqi Wang. 2024. Enhancing

LLM-based Test Generation for Hard-to-Cover Branches via Program Analysis.

arXiv preprint arXiv:2404.04966 (2024).
[38] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,

and Xin Peng. 2023. No more manual tests? evaluating and improving chatgpt

for unit test generation. arXiv preprint arXiv:2305.04207 (2023).

[39] Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and

Hong Mei. 2010. Test generation via dynamic symbolic execution for mutation

testing. In 2010 IEEE international conference on software maintenance. IEEE, 1–10.
[40] Fengmin Zhu and Fei He. 2018. Conflict resolution for structured merge via

version space algebra. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–25.

https://linux.die.net/man/1/diff3
https://github.com/DJjjjhao/ase24-merge
https://git-scm.com/docs/git-merge
https://openai.com/index/gpt-4/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Importance of Behavioral Differences
	2.2 Importance of Test Cases

	3 Problem Definition
	3.1 Definition of Software
	3.2 Multi-Branches Collaborative Development

	4 Approach
	4.1 When they are unmergable
	4.2 When they are mergable
	4.3 When heuristics are applied
	4.4 Automatic Test Generation

	5 Experimental Setup
	5.1 Research Questions
	5.2 Dataset
	5.3 Compared Techniques
	5.4 Evaluation Metrics
	5.5 Implementation

	6 Results and Analysis
	6.1 RQ1: sMerge with Existing Tests Only
	6.2 RQ2: sMerge with Generated tests
	6.3 sMerge with Manually Crafted Tests

	7 Discussion
	8 Related Work
	9 Conclusion
	References

